
10th IPM International Conference on

Fundamentals
of Software Engineering

4 - 5 May, 2023

Tehran, Iran

Conference Pre-Proceedings

Edited by

Hossein Hojjat
Erika Ábrahám

https://imgur.com/sOjmbzk

IPM School of Computer Science

Preface

The growing complexity of the modern software and hardware systems and their
ever more central role in society poses many challenges concerning their relia-
bility, safety, correctness and robustness. Based on a variety of fundamental
concepts from theoretical computer science, formal methods techniques aim at
making a significant contribution to better quality systems. The development
and use of formal methods aspire to mathematically sound methods and tools
for system analysis and verification.

The present volume contains the pre-proceedings of the tenth IPM Interna-
tional Conference on Fundamentals of Software Engineering (FSEN). This event
was held as a mixed virtual/physical event in Tehran, Iran, on May 4-5, 2023.
This biannual event is organized by the School of Computer Science at the In-
stitute for Research in Fundamental Sciences (IPM) in Iran, in cooperation with
ACM SIGSOFT and IFIP WG2.2. The topics of interest in FSEN span over all
aspects of formal methods, especially those related to advancing the application
of formal methods in the software industry and promoting their integration with
practical engineering techniques.

The Program Committee of FSEN 2023 consists of 42 top researchers from 20
countries. This edition of FSEN received 19 submissions. Each submission was
reviewed by at least 3 independent referees, for its quality, originality, contri-
bution, clarity of presentation, and its relevance to the conference topics. After
thorough discussions on each individual paper, the Programme Committee has
accepted 9 regular full papers and 2 short papers for presentation at the confer-
ence. Four distinguished keynote speakers were invited at FSEN 2023: Wolfgang
Ahrendt, Dines Bjørner, Mohammad Reza Mousavi and Heike Wehrheim. Many
people contributed to make FSEN 2023 a success. First of all, we would like to
thank the many authors that submitted high-quality papers. Special thanks also
go to the Institute for Research in Fundamental Sciences (IPM) in Tehran, Iran,
for their financial support and local organization of FSEN 2023. We also thank
the members of the Program Committee for their time, effort, and excellent and
timely contributions to making FSEN a high-quality international conference
and the Steering Committee of FSEN for their valuable support and feedback
during all phases of the organisation. We are also grateful to IFIP, the IFIP
Working Group 2.2 and ACM for their continuing support of the FSEN confer-
ence series. Furthermore, we thank the providers of the EasyChair conference
management system, whose facilities greatly helped us run the review process
and facilitate the preparation of these pre-proceedings.

Finally, we are indebted to all conference attendees for their active and lively
participation in the FSEN research community, ultimately contributing to the
success of this special conference series.

April 8, 2023
Tehran

Hossein Hojjat
Erika Ábrahám

v

Table of Contents

Structured specification of paraconsistent transition systems 1
Juliana Cunha, Alexandre Madeira and Lúıs Soares Barbosa

Towards a Basic Theory for Partial Differentiation in the Prototype
Verification System . 18

Andrea Domenici Case studies of development of verified programs
with Dafny for accessibility assessment . 24

João Faria and Rui Abreu TPGen: A Self-Stabilizing GPU-Based
Method for Test and Prime Paths Generation . 39

Ebrahim Fazli and Ali Ebnenasir An Optimised Complete Strategy
for Testing Symbolic Finite State Machines . 54

Wen-Ling Huang, Niklas Krafczyk and Jan Peleska Afra: An
Eclipse-Based Tool with Extensible Architecture for Modeling and
Model Checking of Rebeca Family Models . 71

Ehsan Khamespanah, Marjan Sirjani and Ramtin Khosravi
Interaction-based Offline Runtime Verification of Distributed Systems . . . 87

Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault
Lapitre and Pascale Le Gall Genetic Algorithm for Program Synthesis . . 102

Yutaka Nagashima Template-Based Conjecturing for Automated
Induction in Isabelle/HOL . 111

Yutaka Nagashima, Zijin Xu, Ningli Wang, Daniel Sebastian Goc
and James Bang Verification of the busy-forbidden protocol 126

Flip van Spaendonck kProp: Multi-Neuron Relaxation Method for
Neural Network Robustness Verification . 141

Xiaoyong Xue, Xiyue Zhang and Meng Sun

vi

Program Committee

Erika Abraham RWTH Aachen University
Ebru Aydin Gol Middle East Technical University
Ezio Bartocci TU Wien
Simon Bliudze INRIA
Maria Paola Bonacina Università degli Studi di Verona
Borzoo Bonakdarpour Michigan State University
Marcello Bonsangue Leiden University
Mario Bravetti University of Bologna
Georgiana Caltais University of Twente
Erik De Vink Eindhoven University of Technology
Fathiyeh Faghih University of Tehran
Wan Fokkink Vrije Universiteit Amsterdam
Adrian Francalanza University of Malta
Fatemeh Ghassemi University of Tehran
Jan Friso Groote Eindhoven University of Technology
Kim Guldstrand Larsen Computer Science, Aalborg University
Hassan Haghighi Shahid Beheshti University
Osman Hasan National University of Sciences and Technology

(NUST)
Hossein Hojjat Tehran Institute for Advanced Studies, Iran
Mohammad Izadi Department of Computer Engineering, Sharif Uni-

versity of Technology, Iran.
Einar Broch Johnsen University of Oslo
Amir Kafshdar Goharshady Hong Kong University of Science and Technology
Narges Khakpour Newcastle University
Ehsan Khamespanah School of Electrical and Computer Engineering,

Tehran University, Tehran, Iran
Ramtin Khosravi University of Tehran
Eva Kühn Vienna University of Technology
Mieke Massink CNR-ISTI, Pisa, Italy
Jedidiah McClurg Colorado State University
Rosemary Monahan Maynooth University, Ireland
Mohammad Mousavi King’s College London
Ali Movaghar Sharif University of Technology
Luigia Petre Åbo Akademi University
José Proença CISTER-ISEP and HASLab-INESC TEC
Anne Remke WWU Münster
Philipp Ruemmer University of Regensburg
Asieh Salehi Fathabadi University of Southampton
Cristina Seceleanu Mälardalen University
Marjan Sirjani Malardalen University
Meng Sun Peking University
Carolyn Talcott SRI International

vii

Tayssir Touili LIPN, CNRS & University Paris 13
Martin Wirsing Ludwig Maximilian University of Munich
Lijun Zhang Institute of Software, Chinese Academy of Sciences

Peter Ölveczky University of Oslo

viii

Additional Reviewers

B

Barrett, Clark
Blanchette, Jasmin
L

Leofante, Francesco
Luan, Xiaokun
T

Turrini, Andrea

ix

Keynote Speeches

Dynamic Logics for Practical Software Verification

Wolfgang Ahrendt
Chalmers University of Technology, Sweden

ahrendt@chalmers.se

Abstract. Dynamic logics (DL) are mutli-modal logics, where modalities are param-
eterised over actions from some action language. For instance, the action language
can be an (abstract or concrete) stateful programming language. In this talk, I will
introduce principles of propositional and first-order DL, and show how DL based
verification can be used for various application areas, like object-oriented software,
smart contracts, and hybrid (discrete/continuous) systems. I will also touch on com-
binations of DL based verification with other validation methods, like testing and
runtime verification.

vi

Automata Learning for Evolving and Concurrent

Systems

Mohammad Reza Mousavi
King’s College London, UK

mohammad.mousavi@kcl.ac.uk

Abstract. Automata learning has been successfully used in learning models for in-
dustrial black-box and legacy systems. It forms a hypothesis about the behaviour
of the system under learning by querying it and then tests its hypothesis through
extensive testing. In this talk, we present an overview of our recent work on extend-
ing automata learning to evolving systems (both in time and in space), as well as
compositional automata learning for concurrent systems.
This talk is based on joint work with many people, including Diego Damasceno, Jan
Friso Groote, Hossein Hojjat, Ramtin Khosravi, Adenilso Simao, and Shaghayegh
Tavassoli.

vii

Pipelines: A Domain Science & Engineering

Description

Dines Bjørner
Technical University of Denmark

bjorner@gmail.com

Abstract. We present a description of an abstracted domain of pipelines. The de-
scription structure follows that of the domain analysis structure into a description
of endurant entities: (i) the observation of parts and fluids, (ii) the identification
of unique part identifiers, (iii) the mereology of parts and (iv) the (multitude) of
part and fluid attributes; and the description of perdurant entities: (v) states, (vi)
channels, (vii) actions and (viii) behaviours.

viii

View-Based Semantics and Logics for Weak

Memory

Heike Wehrheim
University of Oldenburg, Germany

heike.wehrheim@uni-oldenburg.de

Abstract. On modern multi-core architectures the behaviour of concurrent pro-
grams differs from the usually assumed sequential consistency (SC): the semantics is
influenced by the underlying weak memory model. Unlike SC, threads might see dif-
ferent values for shared locations. In this talk, I will discuss semantics for concurrent
programs on weak memory models characterised by such views of threads. Based on
these semantics, I will then present a proof calculus for reasoning about concurrent
programs. It follows the style of Owicki-Gries proof calculi (including interference-
freedom checks), but employs a novel assertion language and novel Hoare triples for
primitive commands.

ix

Regular & Short Papers

Structured specification of paraconsistent
transition systems ‹

Juliana Cunha1, Alexandre Madeira1, and
Lúıs Soares Barbosa2

1 CIDMA, Dep. Mathematics, Aveiro University, Aveiro, Portugal
2 INESC TEC & Dep. Informatics, Minho University, Braga, Portugal

Abstract. This paper sets the basis for a compositional and struc-
tured approach to the specification of paraconsistent transitions systems,
framed as an institution. The latter and theirs logics were previously
introduced in [CMB22] to deal with scenarios of inconsistency in which
several requirements are on stake, either reinforcing or contradicting each
other.

1 Introduction

In Software Engineering it is often a challenge to cope with modelling contexts in
which the classical bivalent logic distinction is not enough. Several modal logics
have been proposed [BEGR09] to address such a challenge, namely to capture
vagueness or uncertainty. Typically, their semantics is based on residuated lat-
tices, i.e. complete lattices equipped with a commutative monoidal structure
such that the monoid composition has a right adjoint, the residue. The lattice
carrier stands for the set of truth values, a typical example being the real r0, 1s
interval.

Often, however, there is also a need to go further and equip the under-
lying Kripke structure with both positive and negative accessibility relations,
one weighting the possibility of a transition to be present, the other weighting
the possibility of being absent. Moreover, in a number of real situations, such
weights are not complementary, and thus both relations should be formally taken
into consideration. For this purpose, in a previous work [CMB22] we introduced
paraconsistent transition systems, abbreviated to PLTS, and the corresponding
modal logic, which generalises Belnap-Dunn four-valued logic [RJJ15] in a very
generic way. Actually, all the relevant constructions are parametric in a class of
residuated lattices, thus admitting different instances according to the structure
of the truth values domain that better suits each modelling problem at hands.

To exemplify suppose, for example, that weights for both transitions come
from a residuated lattice over the real r0, 1s interval.
‹ This work is supported by by FCT, the Portuguese funding agency for Science and
Technology with the projects UIDB/04106/2020 and PTDC/CCI-COM/4280/2021

1

T
ra
n
si
ti
o
n
is

p
re
se
n
t

Transition is absent

0 1

0

1

Fig. 1: The vagueness-inconsistency square [CMB22].

Then, the two accessibility relations jointly express a scenario of

– inconsistency, when the positive and negative weights are contradictory, i.e.
they sum to some value greater than 1 (cf, the upper triangle in Fig. 1 filled
in grey). Exploring this area of the square

– vagueness, when the sum is less than 1 (cf, the lower, periwinkle triangle in
Fig. 1);

– strict consistency, when the sum is exactly 1, which means that the mea-
sures of the factors enforcing or preventing a transition are complementary,
corresponding to the red line in the figure.

Exploring the upper triangle calls for paraconsistent logics [Jas69,CCM07], in
which inconsistent information is considered as potentially informative. Intro-
duced more than half a century ago, through the pioneering work of F. Asenjo
and Newton da Costa, such logics are becoming increasingly popular (see, for ex-
ample, reference [Aka16], a recent book on engineering applications). This paper
goes a step ahead. First the modal logic associated to PLTS is extended to the
multi-modal case. Then it is prepared to act as a structured specification logic
[ST12] equipped with specific versions of the standard structured specification
operators à la CASL [MHST03]. This offers to the working software engineer the
(formal) tools to specify, in a compositional way, paraconsistent transition sys-
tems. The approach builds on previous work documented in reference [JGMB21]
where a similar agenda is proposed for the specification of fuzzy transition sys-
tems. Technically, the price to be paid to support this move consists of framing
the logic as an institution [GB92].

The rest of the paper is divided in two sections. Section 2 characterizes an
institution for paraconsistent transition systems LpAq. The formalism is para-
metric to the truth space A, formalised as a metric twisted structure. Then, in
Section 3, the usual structured specification operators [ST12] are re-built on top
of this institution. These are the basic (technical) results for supporting a specifi-
cation framework for this sort of systems, within the well-established tradition of

2

algebraic specification. Going a step further into the specification methodology
and engineering practices will be discussed in a twin publication.

2 An institution for paraconsistent transitions systems

We start by recalling the notion of an institution, followed, in 2.2, by a charac-
terization of metric twisted algebras which continue the semantic domain upon
which the logic is parametrised, as mentioned in the introduction. Such struc-
tures amount to a particular class of residuated lattices in which the lattice meet
and the monoidal composition coincide, equipped with a metric which entails a
concrete meaning to the vagueness-inconsistency square informally described in
the introduction. Finally, in sub-section 2.3, the relevant institution(s) for LpAq
is built in a step by step way and suitably illustrated.

2.1 Institutions

An institution abstractly defines a logic system by describing the kind of sig-
natures in the system, the kind of models and a satisfaction relation between
models and sentences.

Definition 1 ([GB92]). An institution I is a tuple

I “ pSignI ,SenI ,ModI , |ùIq
consisting of

– a category SignI of signatures
– a functor SenI : SignI Ñ Set giving a set of Σ´sentences for each signature
Σ P |SignI |. For each signature morphism σ : Σ Ñ Σ1 the function

SenIpσq : SenIpΣq Ñ SenIpΣ1q
translates Σ ´ sentences to Σ1 ´ sentences

– a functor ModI : SignopI Ñ Cat assigns to each signature Σ the category of
Σ ´models. For each signature morphism σ : Σ Ñ Σ1 the functor

ModIpσq : ModIpΣ1q Ñ ModIpΣq
translates Σ1 ´models to Σ ´models

– a satisfaction relation |ùΣI Ď |ModIpΣq|ˆSenIpΣq determines the satisfaction
of Σ ´ sentences by Σ ´models for each signature Σ P |SignI |.

Satisfaction must be preserved under change of signature that is for any signature
morphism σ : Σ Ñ Σ1, for any φ P SenIpΣq and M 1 P |ModIpΣ1q|

´
M 1 |ùΣ1

I SenIpσqpφq
¯
ô `

ModIpσqpM 1q |ùΣI φ
˘

(1)

3

Actually, when formalising multi-valued logics as institutions, the equivalence on
the satisfaction condition (1) can be replaced by an equality (c.f. [ACEGG91]):

´
M 1 |ùΣ1

I SenIpσqpφq
¯
“ `

ModIpσqpM 1q |ùΣI φ
˘

(2)

The institution formalisation several logics, including Propositional, Equa-
tional, First-order, High-Order, etc, can be found in reference [ST12].

2.2 (Metric) Twisted algebras

A residuated lattice xA,[,\, 1, 0,d,á, ey over a set A is a complete lattice
xA,[,\, 1, 0y, equipped with a monoid xA,d, ey such that d has a right ad-
joint, á, called the residuum. We will, however, focus on a particular class of
residuated lattices in which the lattice meet ([) and monoidal composition (d)
coincide. Thus the adjunction is stated as a[b ď c iff b ď aá c. Additionally,
we will enforce a pre-linearity condition

paá bq \ pbá aq “ 1 (3)

A residuated lattice obeying prelinearity is known as a MTL-algebra [EG01].
With a slight abuse of nomenclature, the designation iMTL-algebra, from integral
MTL-algebra, will be used in the sequel for the class of semantic structures
considered, i.e. prelinear, residuated lattices such that [and d coincide.
Examples of iMTL-algebras are:

– the Boolean algebra 222 “ xt0, 1u,^,_, 1, 0,Ñy

– 333 “ xtJ, u,Ku,^3,_3, J,K,Ñ3y, where
^3 K u J
K K K K
u K u u
J K u J

_3 K u J
K K u J
u u u J
J J J J

Ñ3 K u J
K J J J
u K J J
J K u J

– :G:G:G “ xr0, 1s,min,max, 0, 1,Ñy, with implication defined as

aÑ b “
#
1 ifa ď b

b otherwise

We focus on iMTL-algebras AAA whose carrier A supports a metric space pA, dq,
with suitable choice of d. Where d : AˆAÑ R` such that dpx, yq “ 0 iff x “ y
and dpx, yq ď dpx, zq ` dpz, yq.

In order to operate with pairs of truth weights, it was introduced in [CMB22]
the notion of AAA-twisted algebra. This algebraic structure will play a crucial role
in the semantics of our institution, consists of an enrichment of a twist-structure
[Kra98] with a metric. The latter is relevant to interpret the consistency operator
of the logic:

Definition 2 ([CMB22]). Given a iMTL-algebra AAA enriched with a metric d,
a AAA-twisted algebra A “ xAˆA,^,_,ùñ,�, Dy is defined as:

– pa, bq^ pc, dq “ pa[c, b\ dq

4

– pa, bq_ pc, dq “ pa\ c, b[dq
– pa, bq ùñ pc, dq “ paá c, a[dq
– �pa, bq “ pb, aq
– Dppa, bq, pc, dqq “ a

dpa, cq2 ` dpb, dq2

The order in AAA is lifted to A as pa, bq ĺ pc, dq iff a ď c and b ě d.

2.3 Institutional framing of LpAq
Let us fix a given twisted algebraA. In the following subsections we will introduce
the ingredients for an institution LpAq “ pSign,Sen,Mod, |ùq.

Signatures

Definition 3. A signature Σ is a pair pProp,Actq where Prop is a set of propo-
sitions and Act is a set of action symbols. A signature morphism σ : Σ Ñ Σ1 is
a pair of functions σProp : PropÑ Prop1 and σAct : ActÑ Act1.

The category of signatures and their morphisms will be called signature cat-
egory and will be denoted by Sign.

The models

Definition 4. Let pProp,Actq be a signature. A pProp,Actq-LpAq paraconsis-
tent labelled transition system, is a tuple M “ pW,R, V q such that,

– W is a non-empty set of states,
– R “ pRa : W ˆW Ñ Aˆ Aqa P Act is an Act-indexed family of partial func-

tions, given any pair of states pw1, w2q P W ˆW and an action a P Act,
relation R assigns a pair ptt, ffq P AˆA such that tt represents the evidence
degree of the transition from w1 to w2 occurring through action a and ff rep-
resents the evidence degree of the transition being prevented from occurring.

– V :W ˆPropÑ AˆA is a valuation function, that assigns to a proposition
p P Prop at a given state w a pair ptt, ffq P AˆA such that tt is the evidence
degree of p holding in w and ff the evidence degree of not holding

The images of a state through an action a is the set of states for which the tran-
sition is defined, i.e. the set Rarws “ tw1 P W |Rapw,w1q “ ptt, ffq for some P
tt, ff P Au. For any pair ptt, ffq P AˆA, ptt, ffq` denotes tt and ptt, ffq´ denotes
ff .

Definition 5. Let M “ pW,R, V q and M 1 “ pW 1, R1, V 1q be two pProp,Actq-
PLTS. A morphism between M and M 1 is a function h : W Ñ W 1 compatible
with the source valuation and transition functions, i.e.

– for each a P Act, Rapw1, w2q ď R1
aphpw1q, hpw2qq, and

– for any p P Prop, w PW , V pw, pq ď V 1phpwq, pq.

5

We say that M and M 1 are isomorphic, in symbols M –M 1, whenever there
are morphisms h : M Ñ M 1 and h´1 : M 1 Ñ M such that h1 ˝ h “ idW 1

h ˝ h1 “ idW .
pProp,Actq-PLTSs and the corresponding morphisms form a category de-

noted by Mod, which acts as the model category for our LpAq logic.
Definition 6. Let σ : pProp,Actq Ñ pProp1,Act1q be a signature morphism and
M 1 “ pW 1, R1, V 1q a pProp1,Act1q-PLTS. The σ-reduct of M 1 is the pProp,Actq-
PLTS M |σ “ pW,R, V q where
– W “W 1,
– for p P Prop, w PW , V pw, pq “ V 1pw, σppqq, and
– for w, v PW and a P Act, Rapw, vq “ R1

σpaqpw, vq.
Reducts preserve morphism. Hence, each signature morphism σ : pProp,Actq Ñ
pProp1,Act1q defines a functor Modpσq : ModpProp1,Act1q Ñ ModpProp,Actq
that maps systems and morphisms to the corresponding reducts. This lifts to a
functor, Mod : pSignqop Ñ CAT, mapping each signature to the category of its
models, and each signature morphism to its reduct functor.

The sentences Once characterised models for LpAq. Let us define its syntax
and the satisfaction relation.

Definition 7. Given a signature pProp,Actq the set SenpProp,Actq of sen-
tences is given by the following grammar

φ ::“ p | K |␣φ |φÑ φ |φ_ φ |φ^ φ | rasφ | xayφ |��rasφ |��xayφ | ˝ φ
with p P Prop and a P Act. Note that J “ ␣K and φ1 Ø φ2 “ pφ1 Ñ
φ2q ^ pφ2 Ñ φ1q.

Each signature morphism σ : pProp,Actq Ñ pProp1,Act1q induces a sentence
translation scheme Senpσq : SenpProp,Actq Ñ SenpProp1,Act1q recursively de-
fined as follows:

‚ Senpσqppq “ σPropppq
‚ SenpσqpKq “ K
‚ Senpσqp␣φq “ ␣Senpσqpφq
‚ Senpσqpφd φ1q “ Senpσqpφq d Senpσqpφ1q, d P t_,^,Ñu
‚ Senpσqprasφq “ rσActpaqsSenpσqpφq
‚ Senpσqpxayφq “ xσActpaqySenpσqpφq
‚ Senpσqp��rasφq “�����rσActpaqsSenpσqpφq
‚ Senpσqp��xayφq “�����xσActpaqySenpσqpφq
‚ Senpσqp˝φq “ ˝Senpσqpφq

which entails a functor Sen : Sign Ñ Set mapping each signature to the set of
its sentences, and each signature morphism to the corresponding translation of
sentences.

6

The satisfaction relation

Definition 8. Given a signature pProp,Actq, and a pProp,Actq-PLTS M “
pW,R, V q, the satisfaction relation

|ù : ModpProp,Actq ˆ SenpProp,Actq Ñ AˆA
is defined by

pM |ù φq “ ^
wPW pM,w |ù φq

where the relation |ù is recursively defined as follows:

‚ pM,w |ù pq “ V pw, pq
‚ pM,w |ù Kq “ p0, 1q
‚ pM,w |ù ␣φq “ �pM,w |ù φq
‚ pM,w |ù φÑ φ1q “ pM,w |ù φq ùñ pM,w |ù φ1q
‚ pM,w |ù φ_ φ1q “ pM,w |ù φq_ pM,w |ù φ1q
‚ pM,w |ù φ^ φ1q “ pM,w |ù φq^ pM,w |ù φ1q
‚ pM,w |ù rasφq “ p ra`spM,w,φ`q, xa`ypM,w,φ´q q
‚ pM,w |ù xayφq “ p xa`ypM,w,φ`q, ra`spM,w,φ´q q
‚ pM,w |ù��rasφq “ p xa´ypM,w,φ´q, ra´spM,w,φ`q q
‚ pM,w |ù��xayφq “ p ra´spM,w,φ´q, xa´ypM,w,φ`q q
‚ pM,w |ù ˝φq “

#
p1, 0q if pM,w |ù φq P ∆C

p0, 1q otherwise

where

– ra`spM,w,φ˚q “ Ű
w1PRarws

pRà pw,w1q á pM,w1 |ù φq˚q

– ra´spM,w,φ˚q “ Ű
w1PRarws

pRá pw,w1q á pM,w1 |ù φq˚q

– xa`ypM,w,φ˚q “ Ů
w1PRarws

pRà pw,w1q [pM,w1 |ù φq˚q

– xa´ypM,w,φ˚q “ Ů
w1PRarws

pRá pw,w1q [pM,w1 |ù φq˚q

– ∆C “ tpa, bq |Dppa, bq, p0, 0qq ď Dppa, bq, p1, 1qqu
with ˚ P t`,´ u. Hence φ is valid in M if for any w PW , pM,w |ù φq “ p1, 0q.

The following examples serve to illustrate the satisfaction relation in our
logic.

Example 1. Consider 222 the underlying iMTL-algebra, a signature ptp, qu, tauq
and a PLTS M “ pts0, s1u, R, V q depicted in the figure below:

a|pJ,Kq
a|pJ,Jq s0 s1

7

where V ps0, pq “ pJ,Kq, V ps0, qq “ pK,Jq, V ps1, pq “ pJ,Jq and V ps1, qq “
pK,Kq.

M, s0 |ù��xay p_ q
“pM, s0 |ù��xay pq_ pM, s0 |ù qq
“pra´spM, s0, p

´q, xa´ypM, s0, p
`qq_ V ps0, qq

“
ˆ
pRá ps0, s0q á pM, s0 |ù pq´q [pRá ps0, s1q á pM, s1 |ù pq´q,

pRá ps0, s0q [pM, s0 |ù pq`q \ pRá ps0, s1q [pM, s1 |ù pq`q
˙

_ pK,Jq

“
ˆ
pJ á Kq [pK á Jq, pJ [Jq \ pK [Jq

˙
_ pK,Jq

“pK [J,J\Kq_ pK,Jq “ pK,Jq_ pK,Jq “ pK \ K,J[Jq “ pK,Jq
At state s0 the sentence ��xay p _ q holds with evidence degree K and doesn’t
hold with evidence degree J so we are in a case where the pair of weights are
consistent!

Example 2. Let 333 be the underlying iMTL-algebra and M “ pts0, s1u, R, V q
be a ptp, q, ru, ta, buq-PLTS depicted in the figure below. Where V ps0, pq “
pJ,Jq, V ps0, qq “ V ps1, pq “ pK, uq, V ps0, rq “ V ps1, rq “ pu, uq, V ps1, qq “
pK,Kq

a|pJ,Kq

b|pJ,Jq

b|pJ, uq b|pu,Jqs0 s1

pM, s0 |ù r Ñ pp_ qqq “pM, s0 |ù rq ñ pM, s0 |ù pp_ qqq
“V ps0, rq ñ ppM, s0 |ù pq_ pM, s0 |ù qqq
“V ps0, rq ñ pV ps0, pq_ V ps0, qqq
“pu, uq ñ ppJ,Jq_ pK, uqq
“pu, uq ñ pJ \ K,J[uq
“pu, uq ñ pJ, uq
“puá J, u[uq “ pJ, uq

At state s0 the sentence r Ñ pp _ qq has an evidence degree J of holding and
it’s unknown, u, the evidence degree in which it doesn’t hold.

8

Notice that,

xb`ypM, s1, p
`q “

ğ

sPRbrs1s
pR`

b ps1, sq [pM, s |ù pq´q

“pR`
b ps1, s1q [pM, s1 |ù pq´q \ pR`

b ps1, s0q [pM, s0 |ù pq´q
“

ˆ
pu,Jq` [pJ, uq´

˙
\

ˆ
pJ,Jq` [pJ,Jq´

˙

“pu[uq \ pJ [Jq “ J
Analogously, we can see that prb`spM, s1, p

´qq “ J. Therefore, pM, s1 |ù xby pq “
pxb`ypM, s1, p

`q , rb`spM, s1, p
´qq “ pJ,Jq. That is, in state s1 the sentence xbyp

has evidence degree J of holding and evidence degree J of not holding.

Proposition 1. Let σ : pProp,Actq Ñ pProp1,Act1q be a signature morphism,
M 1 a pProp1,Act1q-PLTS, and φ P SenpProp,Actq a formula. Then, for any
w PW , `

M 1|σ, w |ù φ
˘ “ `

M 1, w |ù Senpσqpφq˘ (4)

Proof. The proof, given by induction on the structure of sentences, is in the
appendix.

Theorem 1. For a given metric twisted structure A, LpAq is an institution.

Such abstraction is necessary to get away from the particular syntax of the logic
and to focus on building larger specifications in a structured manner.

3 Structured specification with LpAq
Usually one starts with flat specifications, that consist of a signature and a set
of sentences in a logic, new specifications are then built through a composition
of operators. These specification building operators are defined in an arbitrary
but fixed institution which allows this theory to be applicable to a wide range
of logics that can be framed as institutions.

Definition 9. A specification is a pair

SP “ pSigpSP q,ModpSP qq
where SigpSP q is a signature in Sign and the models of SP is a function

ModpSP q : ModpSigpSP qq Ñ AˆA.
For some model M P ModpSigpSP qq we have that ModpSP qpMq “ ptt, ffq, with
tt representing the evidence degree of M being a model of SP and the value ff
representing the evidence degree of M not being a model of SP .

Specifications are built in a structured way as follows:

9

Flat Specifications If Σ P |Sign| is a signature and Φ Ď SenpΣq is a set of
Σ-sentences, often called axioms, then SP “ `

Σ,Φ
˘
is a flat specification

consequently

– SigpSP q “ Σ

– ModpSP qpMq “
ˆ

φ̂PΦpM |ù φq
˙
“

ˆ

φ̂PΦ ^
wPW pM,w |ù φq

˙

Flat specifications are a basic tool to build small specifications.
Union Let SP and SP 1 be two specifications over the same signature, Σ. Then

SP Y SP 1 is
– SigpSP Y SP 1q “ Σ
– ModpSP Y SP 1qpMq “ModpSP qpMq^ModpSP 1qpMq

If SP1 “ xΣ,Φ1y and SP2 “ xΣ,Φ2y are flat specifications then:

ModpxΣ,Φ1y Y xΣ,Φ2yqpMq “ModpxΣ,Φ1 Y Φ2yqpMq
´Translation If SP is a Σ-specification and σ : Σ Ñ pProp1,Act1q a signature
morphism. Then,

– SigpSP with σq “ pProp1,Act1q
– ModpSP with σqpM 1q “ModpSP qpM 1|σq

Note that M 1 is a pProp1,Act1q ´model.
Hiding If SP 1 is a Σ1-specification and σ : pProp,Actq Ñ Σ1 is a signature

morphism then,

– SigpSP 1 hide via σq “ pProp,Actq
– ModpSP 1 hide via σqpMq “

ˆ
_

NPMσ
ModpSP 1qpNq

˙

where Mσ is the class of all σ-expansions of M , i.e. Mσ “ tN P
ModpSP 1q | N |σ “Mu.

The following examples illustrate some of the structured specifications oper-
ators defined above.

Example 3. Consider 222 the underlying iMTL-algebra. Given the signature Σ “
ptp, qu, tb, cuq, the specification SP “ xΣ,Φy where Φ “ trcs��xbyJ, ␣pp_qq, q Ñxcy qu and the inclusion morphism σ : ptp, qu, tb, cuq Ñ ptp, qu, ta, b, cuq. Let
M 1 “ pts0, s1, s2u, R1, V 1q be a ptp, qu, ta, b, cuq-transition model depicted below.

s0

s1

s2

b|pJ,Jq c|pJ,Kq
a|pJ,Kq

a|pK,Jq,
c|pJ,Jq

c|pK,Jq c|pJ,Kq

10

where V 1ps0, pq “ V 1ps0, qq “ V 1ps1, qq “ pJ,Jq, V 1ps1, pq “ pK,Kq, V 1ps2, pq “
pJ,Kq and V 1ps2, qq “ pK,Jq.

The following Σ-model M 1|σ “ pW,R, V q is the σ-reduct of M 1:

s0

s1

s2

b|pJ,Jq c|pJ,Kq

c|pJ,Jqc|pK,Jq c|pJ,Kq

By the definition of σ-reduct: W “W 1 and V ps, rq “ V 1ps, rq for any s PW and
r P tp, qu.
Then,

´ SigpSP with σq “ ptp, qu, ta, b, cuq

´ ModpSP with σqpM 1q “ModpSP qpM 1|σq “
¨
˝

φ̂PΦ
sPW

pM 1|σ, s |ù φq
˛
‚

Notice that,

M 1|σ, s0 |ù��xbyJ
“ prb´spM 1|σ, s0,J´q, xb´ypM 1|σ, s0,J`qq
“ pR´

b ps0, s1q Ñ pM 1|σ, s1 |ù Jq´, R´
b ps0, s1q ^ pM 1|σ, |ù Jq`q

“ pJ Ñ K,J^Jq “ pK,Jq

Similarly, we find that pM 1|σ, s1 |ù ��xbyJq “ pJ,Kq “ pM 1|σ, s2 |ù ��xbyJq.
Hence,

M 1|σ, s0 |ù rcs��xbyJ
“ prc`spM 1|σ, s0, p��xbyJq`q, xc`ypM 1|σ, s0, p��xbyJq´qq
“ pRc̀ ps0, s2q Ñ pM 1|σ, s2 |ù��xbyJq`, Rc̀ ps0, s2q ^ pM 1|σ, s2 |ù��xbyJq´q
“ pJ Ñ J,J^Kq “ pJ,Kq

Similarly, we can check that pM 1|σ, s1 |ù rcs��xbyJq “ pK,Jq and that pM 1|σ, s2 |ù
rcs��xbyJq “ pJ,Kq. Therefore, there is K evidence of sentence rcs��xbyJ being true
in model M 1|σ and evidence J of being false:

pM 1|σ |ù rcs��xbyJq “ ^
sPWpM

1|σ, s |ù rcs��xbyJq “ pJ^K^J,K_J_Kq “ pK,Jq

11

For sentence ␣pp_ qq:
pM 1|σ |ù ␣pp_ qqq

“
ˆ

^
sPWpM

1|σ, s |ù ␣pp_ qqq
˙

“
ˆ

^
sPW � pM 1|σ, s |ù p_ qq

˙

“
ˆ

^
sPW � ppM 1|σ, s |ù pq_ pM 1|σ, s |ù qqq

˙

“ p�pJ ^ J,J_Jqq^ p�pK ^ J,K_Jqq^ p�pJ ^ K,K_Jqq
“ p�pJ,Jqq^ p�pK,Jqq^ p�pK,Jqq
“ pJ,Jq^ pJ,Kq^ pJ,Kq “ pJ ^ J^J,J_K_Kq “ pJ,Jq

For sentence q Ñ xcyq:
M 1|σ, s0 |ù q Ñ xcyq

“ pM 1|σ, s0 |ù qq ùñ pM 1|σ, s0 |ù xcyqq
“ pJ,Jq ùñ pxc`ypM, s0, q

`q, rc`spM, s0, q
´qq

“ pJ,Jq ùñ
˜ ł

sPW
pRc̀ ps0, sq ^ pM 1|σ, s |ù qq`q,

ľ

sPW
pRc̀ ps0, sq Ñ pM 1|σ, s |ù qq´q

¸

“ pJ,Jq ùñ ppK ^ Jq _ pK ^ Jq _ pJ ^ Kq, pK Ñ Jq ^ pK Ñ Jq ^ pJ Ñ Jqq
“ pJ,Jq ùñ pK,Jq “ pJ Ñ K,J^Jq “ pK,Jq

Similarly, we have that pM 1|σ, s1 |ù q Ñ xcyqq “ pJ,Jq and pM 1|σ, s2 |ù q Ñ
xcyqq “ pJ,Kq. Therefore, pM 1|σ |ù q Ñ xcyqq “ pK,Jq ^ pJ,Jq ^ pJ,Kq “
pK,Jq. In conclusion,

ModpSP qpM 1|σq
“ pM 1|σ |ù rcs��xbyJq^ pM 1|σ |ù ␣pp_ qqq^ pM 1|σ |ù q Ñ xcyqq
“ pJ ^ K^ K,J_J_Jq “ pK,Jq
“ModpSP with σqpM 1q

The degree of which there is evidence that model M 1 is a model of SP with σ,
i.e. specification SP translated via the morphism σ, is K and the degree to which
there is evidence of M 1 not being a model of the specification is J.
Notice that in this case we have consistency, we are completely certain that
M 1 is not a model of SP with σ, that is, model M 1 doesn’t satisfy the require-
ments/axioms demanded by SP with σ.

The following example is adapted from [MBHM18] to suit paraconsistent
systems and specifications.

12

Example 4. Let 333 be the underlying iMTL-algebra and xAct,Hy a signature
where the set of propositions is empty and the set of actions is Act “ tin, outu
with tinu standing for the input of a text file and toutu standing for the output
of a zip-file.
This example considers a file compressing service working only with text files.
Starting with a loose specification SP0 whose requirements are that at any state:

0.1 rinsxoutyJ, whenever a text file is received for compression there has to exist
an action where there is an output of a zip-file

0.2 xayJ, for some a P tin, outu, that is, the system should never terminate

Let M0 be the following model such that the information regarding the input
action is inconsistent and the information regarding the output action is vague.

in|pJ,Jq out|pu, uqw

It’s possible to check that pM0, w |ù xinyJq “ pJ,Kq and pM0, w |ù rinsxoutyJq “
pu,Kq. Hence,

ModpSP0qpM0q “ pu,Kq^ pJ,Kq “ pu^J,K_Kq “ pu,Kq

As stated, SP0 is a very loose specification that doesn’t demand, for example,
that immediately after an output action must come an input action. Because of
that we will now consider a new specification. Let SP1 be a specification over Σ
whose requirement is that at any state:

1.1 routspxinyJ ^ routsKq, whenever there is an output action the system must
go on with an input

Let SP “ SP0 Y SP1 be the union of both specifications. Then,

ModpSP qpM0q “ModpSP0 Y SP1qpM0q
“ModpSP0qpM0q^ModpSP1qpM0q
“pu,Kq^ pK, uq “ pK, uq

If we now consider the following PLTS, M1:

13

in|pJ,Kq

in|pJ,Kq

out|pu, uqout|pJ,Kq

v0 v1

v2v3

For model M1 we have that:

ModpSP0 Y SP1qpM1q “ModpSP0qpM1q^ModpSP1qpM1q
“pu,Kq^ pJ,Kq “ pu,Kq

Since SP results from the union of SP0 and SP1, both flat specifications. SP0

axioms consists of the union of the axioms of SP0 and SP1, (0.1)+(0.2)+(1.1).
Note that ModpSP qpM0q ď ModpSP qpM1q, thus there is a higher evidence
degree that M1 is a model of SP and a lower evidence degree that M1 isn’t a
model of SP , compared to M0.

4 Conclusions

Paraconsistent transition systems [CMB22] were revisited in an institutional
framework in order to develop a compositional, structured specification approach
for engineering their composition.

Current work includes the study of horizontal and vertical refinement in this
institution, as well as normalization structured specifications. Another impor-
tant extension goes into the domain of observational abstraction: behavioural
specifications resort to a notion of observational satisfaction for the axioms of
a specification, whereas abstractor specifications define an abstraction from the
standard semantics of a specification w.r.t. an observational equivalence relation
between algebras.

Adding abstractor and behavioural operators [HMW18] and investigating a
proper notion of observational equivalence for these systems is in order.

References

[ACEGG91] J. Agust́ı-Cullell, F. Esteva, P. Garcia, and Ll Godo. Formalizing multiple-
valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors, Uncertainty in Knowledge Bases, pages
269–278. Springer, 1991.

14

[Aka16] Seiki Akama, editor. Towards Paraconsistent Engineering, volume 110 of
Intelligent Systems Reference Library. Springer, 2016.

[BEGR09] Félix Bou, Francesc Esteva, Llúıs Godo, and Ricardo Oscar Rodŕıguez. On
the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice.
Journal of Logic and Computation, 21(5):739–790, 10 2009.

[CCM07] Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Logics of Formal
Inconsistency. Handbook of Philosophical Logic, pages 1–93, 2007.

[CMB22] Ana Cruz, Alexandre Madeira, and Lúıs Soares Barbosa. A logic for
paraconsistent transition systems. In Andrzej Indrzejczak and Michal Za-
widzki, editors, 10th International Conference on Non-Classical Logics.
Theory and Applications, volume 358 of EPTCS, pages 270–284, 2022.

[EG01] Francesc Esteva and Lluis Godo. Monoidal t-norm based logic: Towards
a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124:271–288,
12 2001.

[GB92] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
tpecification and programming. J. ACM, 39(1):95–146, 1992.

[HMW18] R. Hennicker, A. Madeira, and M. Wirsing. Behavioural and abstractor
specifications revisited. Th. Comp. Sc., 741:32–43, 2018.

[Jas69] Stanislaw Jaskowski. Propositional calculus for contradictory deductive
systems (communicated at the meeting of march 19, 1948). Studia Logica:
An International Journal for Symbolic Logic, 24:143–160, 1969.

[JGMB21] Manisha Jain, Leandro Gomes, Alexandre Madeira, and Lúıs Soares Bar-
bosa. Towards a specification theory for fuzzy modal logic. In International
Symposium on Theoretical Aspects of Software Engineering, TASE 2021,
pages 175–182. IEEE, 2021.

[Kra98] Marcus Kracht. On extensions of intermediate logics by strong negation.
Journal of Philosophical Logic, 27(1):49–73, 1998.

[MBHM18] Alexandre Madeira, Lúıs S. Barbosa, Rolf Hennicker, and Manuel A. Mar-
tins. A logic for the stepwise development of reactive systems. Theoretical
Computer Science, 744:78–96, 2018. Theoretical aspects of computing.

[MHST03] Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tar-
lecki. CASL, the Common Algebraic Specification Language: Semantics
and proof theory. Computing and Informatics, 22:285–321, 2003.

[RJJ15] Umberto Rivieccio, Achim Jung, and Ramon Jansana. Four-valued modal
logic: Kripke semantics and duality. Journal of Logic and Computation,
27(1):155–199, 06 2015.

[ST12] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Monographs on TCS, an EATCS Series.
Springer, 2012.

15

Appendix

Proposition 1 Let σ : pProp,Actq Ñ pProp1,Act1q be a signature morphism,M 1
a pProp1,Act1q-PLTS, and φ P SenpProp,Actq a formula. Then, for any w PW ,

`
M 1|σ, w |ù φ

˘ “ `
M 1, w |ù Senpσqpφq˘ (5)

Proof. The proof is by induction over the structure of sentences. To simplify
notation we will write σppq instead of σPropppq for any p P Prop and σpaq instead
of σActpaq for any a P Act. The case of K is trivial, by the definition of |ù and
Sen we have that pM 1|σ, w |ù Kq “ p0, 1q “ pM 1, w |ù SenpσqpKqq. For sentences
p P Prop, one observes that by defn of Sen, of |ù and of reducts, pM 1, w |ù
Senpσqppqq “ pM 1, w |ù σppqq “ V 1pw, σppqq “ V pw, pq “ pM 1|σ, w |ù pq. For
sentences ␣φ we observe that, by definition of Sen and of |ù, we have that
pM 1, w |ù Senpσqp␣φqq “ M 1, w |ù ␣Senpσqpφq “ p�pM 1, w |ù Senpσqpφqqq. By
induction hypothesis p�pM 1, w |ù Senpσqpφqqq “ �pM 1|σ, w |ù φq and, again, by
definition of Sen and of |ù, we have �pM 1|σ, w |ù φq “ pM 1|σ, w |ù ␣φq.

Let us consider now formulas composed by Boolean operators. Firstly, we can
observe that, by definition of Sen and of |ù, pM 1, w |ù Senpσqpφ^φ1qq “ pM 1, w |ù
Senpσqpφq^Senpσqpφ1qq “ pM 1, w |ù Senpσqpφqq^pM 1, w |ù Senpσqpφ1qq. By I.H.
we have that pM 1, w |ù Senpσqpφ1qq “ pM 1|σ, w |ù φq ^ pM 1|σ, w |ù φ1q and by
definition of |ù, it is equal to M 1|σ, w |ù pφ^φ1q. The proof for sentences φ_φ1
and φÑ φ1 is analogous.

M 1, w |ù Senpσqprasφq
“ tdefn of Senu
M 1, w |ù rσpaqsSenpσqpφq

“ tdefn of |ùu
prσpaq`spM 1, w, Senpσqpφq`q , xσpaq`ypM 1, w, Senpσqpφq´qq

“ tdef. of ra`s and xa`yu
ˆ ę

w1PR1
σpaqrws

pR1`
σpaqpw,w1q á pM 1, w1 |ù Senpσqpφqq`q,

ğ

w1PR1
σpaqrws

pR1`
σpaqpw,w1q [pM 1, w1 |ù Senpσqpφqq´q

˙

“ t(step ‹)u
ˆ ę

w1PRarws
pR`

a pw,w1q á pM 1|σ, w |ù φq`q,
ğ

w1PRarws
pR`

a pw,w1q [pM 1|σ, w |ù φq´q
˙

“ tdef. ra`s and xa`yu
pra`spM 1|σ, w, φ`q , xa`ypM 1|σ, w, φ´qq

“ tdefn of |ùu
M 1|σ, w |ù rasφ

16

(step ‹) We have by reduct that R1
σpaqrws “ Rarws. Moreover, by I.H., it is true

that pM 1, w |ù Senpσqpφqq “ pM 1|σ, w |ù φq, and hence

ˆ
pM 1, w |ù Senpσqpφqq`, pM 1, w |ù Senpσqpφqq´q

˙
“

ˆ
pM 1|σ, w |ù φq`, pM 1|σ, w |ù φq´

˙ (6)

Therefore, M 1, w |ù Senpσqpφqq` “ pM 1|σ, w |ù φq` and
pM 1, w |ù Senpσqpφqq´ “ pM 1|σ, w |ù φq´.

M 1, w |ù Senpσqp��rasφq
“ tdefn of Senu
M 1, w |ù���rσpaqsSenpσqpφq
“ tdefn of |ùu
pxσpaq´ypM 1, w,Senpσqpφq´q, rσpaq´spM 1, w,Senpσqpφq`qq
“ tdef. of ra´s and xa´yuˆ ğ

w1PR1
σpaqrws

pR1´
σpaqpw,w1q [pM 1, w1 |ù Senpσqpφqq´q,

ę

w1PR1
σpaqrws

pR1´
σpaqpw,w1q á pM 1, w1 |ù Senpσqpφqq`q

˙

“ tanalogous to (step ‹)u
pxa´ypM 1|σ, w, φ´q , ra´spM 1|σ, w, φ`qq
“ tdefn of |ùu
M 1|σ, w |ù��rasφ

The proofs for sentences xayφ and��xayφ are analogous.
Finally, let us consider the proof for sentences ˝φ. By definition of Sen,M 1, w |ù
Senpσqp˝φq “ pM 1, w |ù ˝ Senpσqpφqq. By definition of |ù, this evaluates to p1, 0q,
if pM 1, w |ù Senpσqpφqq P ∆C and to p0, 1q otherwise. Hence, by I.H, it evaluates
to p1, 0q when pM 1|σ, w |ù φq P ∆C and to p0, 1q, i.e., we have pM 1|σ, w |ù ˝φq.

17

Towards a Basic Theory for Partial
Differentiation in the Prototype Verification

System

Andrea Domenici1[0000−0003−0685−2864],(�)

Dept. of Information Engineering, University of Pisa
andrea.domenici@unipi.it

Abstract. This paper presents preliminary work on theories supporting
partial differentiation of scalar fields, which will be based upon, and add
to, the large library of mathematical theories supported by the Proto-
type Verification System theorem-proving environment. These theories
include mathematical analysis of functions of one real-valued variable,
but not, currently, theories on partial differentiation. In this paper, the
issue of defining partial derivatives in the strongly typed, higher-order
language of PVS is discussed, and a straightforward, pragmatic approach
is proposed, introducing the formalizations of some basic concepts.

1 Introduction

Current (and future) applications of formal verification involve highly complex
systems, where software is embedded in continuous physical systems, whose
control software must integrate systems of differential equations.

Logic languages are a class of formalisms used to model both the physical
and software aspects of complex systems, at the different levels of abstraction
required at different phases of development. The work presented in this paper re-
lies on the Prototype Verification System (PVS), an interactive theorem-proving
environment for a higher-order logic language that has been applied to a range
of different engineering problems [2, 3]. A large number of PVS libraries contain
proved results in mathematics and application fields that can be used to prove
further results of theoretical or application-specific interest. However, the exist-
ing libraries currently offer no direct support for partial differentiation (PD).

Developing a full-fledged theory of PD from fundamental definitions, general
enough to verify partial derivatives (PDER) of real-valued functions over do-
mains of arbitrary dimensionality, is a large and complex task. This preliminary
work has the less ambitious goal of producing a set of basic definitions for dif-
ferentiation of scalar fields Rn → R, built upon the existing PVS theories. The
theory presented in this paper (pderiv basic) has been developed as a basis
for future extended theories that designers would use in most practical applica-
tions. For this reason, some definitions follow the approach used in introductory
textbooks on calculus rather than more fundamental formalizations. The theory
defines, in the specification language of PVS, (i) a minimal set of concepts about

18

scalar fields and derivatives, and (ii) a few predicates and functions to support
the verification of PD results.

In the following, Section 2 presents related work, Section 3 introduces the
PVS environment, Section 4 gives an overview of the theory developed in this
work, and Section 5 discusses the limits of this work to propose further research.

2 Related Work

Computer algebra systems, such as MATLAB, Maple, Mathematica, and Max-
ima can compute PDERs symbolically, but they do not address the issue of
verification, which is the motivation for the present work. Even when a problem
is solved automatically with computer algebra, checking the solutions also on a
verification system increases our confidence in their correctness.

The full description of the PVS environment is given by the manuals avail-
able from the PVS site (pvs.csl.sri.com). Among the works on mathematical
analysis with PVS, we mention Dutertre [5] and Gottliebsen [8]. Examples of
applications to control systems can be found in [1, 2]. In paper [4] the PDERs
defining the system’s Jacobian had been written in PVS but their correctness
had not been verified.

Extensive theories on real analysis, including ordinary differentiation, are
available for the Coq proof assistant [9] and the HOL [7] theorem provers.

The KeYmaera X theorem prover [6] supports differential dynamic logic
(dL) [10], a modal specification language featuring ordinary differentiation.

3 The PVS Theorem Proving Environment

The Prototype Verification System is an interactive theorem proving environ-
ment, providing a higher-order logic specification language and an extensive set
of inference rules based on sequent calculus. A user proves a theorem by choos-
ing a PVS rule at each proof step, and each step transforms the current goal
according to the chosen rule. A PVS theory is a named collection of definitions
and formulas. Definitions declare symbols for types, variables, and constants.
Variable and constant symbols may range over functions and relations. Formu-
las are logical expressions identified by a name and labeled by keywords such as
AXIOM, THEOREM, or LEMMA. The theorem prover takes AXIOMs as proved formulas,
while the other formulas are to be proved interactively. Formulas are built with
the usual arithmetic and logical operators and quantifiers, together with opera-
tors for sets, tuples, records, and lists, and conditional operators. The overriding
operator (WITH) enables pointwise redefinition of a function. For example, from

f(x: real): real = 0

we can define a function g that takes the same values as f for all real values
except zero, where it takes the value 1:

g: [real -> real] = f WITH [(0) := 1]

19

A given theory may refer to other theories with IMPORTING directives, inher-
iting their definitions and formulas with the stored proofs for the verified for-
mulas. Theories can be parametric in types and constants (including functions)
and the parameters can be instantiated for the whole theory (in the IMPORTING

directives) or for single occurrences of the imported symbols. Theories can be
grouped in libraries. Name conflicts among theories are resolved by prefixing
the name of the defining theory (and library, if needed) to identifiers. For ex-
ample, structures@listn[real].list(n) is the fully qualified name for finite
lists with n elements, defined in theory listn[real] of library structures.

The type system includes the fundamental arithmetic types, such as natu-
rals, integers, and reals, and also user-definable types, such as records and lists.
The different arithmetic types represent mathematical concepts defined axiomat-
ically. Uninterpreted types are identified by a name but give no information about
their possible values. Likewise, uninterpreted constants are names of single, but
unspecified members of a given type. Subtypes are defined by set comprehension.

Constants are declared by specifying their type and optionally their value
and variables may be declared globally as in n: VAR natural, or locally, within
a quantifier, a λ-expression, or a function argument declaration. Function types
are specified as, e.g.,

int2real: TYPE = [int -> real]

intrat2real: TYPE = [[int, rational] -> real]

int2 int2int: TYPE = [int -> [int -> int]]

where int2real and intrat2real are the functions of signature Z → R and
Z×Q → R, respectively, and int2 int2int are the functions that map integers
to functions of signature Z → Q.

Named function constants are defined, e.g., with this syntax:

incr(n: int): int = n + 1

Anonymous function constants are denoted as λ-expressions, e.g.,

LAMBDA (n: int): n + 1

Proofs based on the sequent calculus are constructed as trees, rooted at the
formula to be proved, of sequents, expressions of the form Γ ⊢ ∆, where Γ and
∆ are sequences of antecedent and consequent formulas, respectively.

The PVS type checker ensures that the conditions for applicability of the
inference rules are satisfied, producing type check conditions (TCC), i.e., as-
sumptions on certain expressions that must be discharged to complete a proof.

The NASALIB libraries [5] are an important collection of PVS definitions and
theorems from various branches of mathematics, including, e.g., linear algebra,
vectors, and metric spaces. In particular, the analysis library defines the basic
concepts for differentiation and integration of real functions of one variable, and
the differentiation rules for standard mathematical functions. It should be noted
that proofs involving these differentiation rules require proving TCCs.

20

4 The pderiv basic Theory

The pderiv basic theory is divided in two parts. The first part is an embryonic
set of concepts about scalar fields and their derivatives, while the second part
introduces a few predicates and functions to support the practical process of
verifying PD results. The theory is parametric in the dimensionality n of a
scalar field Rn → R, where Rn is represented by the PVS type Vector[n], from
the NASALIB theory vectors. A function f(x1, . . . , xn) must be rewritten as
a function f(p), where each occurrence of xi (1 ≤ i ≤ n) must be replaced
by p(i − 1). This produces a parametric theory, applicable to domains of any
dimensionality. Scalar fields are represented as:

vect: TYPE = Vector[n]; Rn2R: TYPE = [vect -> real]

We define a vector as an anonymous function that maps an Index argument
to an element of a NASALIB list of type listn(n). Vectors are created with
this constructor, where nth accesses the i-th element of list l:

list2vect(l: listn[real].listn(n)): Vector = LAMBDA(i: Index): nth(l, i)

Unit vectors are defined as follows:

u(i: Index[n]): vect = LAMBDA(j: Index[n]): IF j= i THEN 1 ELSE 0 ENDIF

Various concepts can be defined after the patterns of similar concepts from
one-variable calculus. For example, the set of adherence points of a set S of
vectors is defined as:

vadh(S: setof[vect]): setof[vect] = {z: vect | FORALL (e: posreal):

EXISTS (v: vect): member(v, S) AND norm(v - z) < e}
where norm is the norm of a vector, defined in theory vectors. The following
lemma, similar to the NASALIB lemma adherence prop1, can then be proved:

vadherence_prop1: LEMMA FORALL (e:posreal, E:setof[vect], (a:(vadh(E)))):

EXISTS (x: vect): member(x, E) AND norm[n](x - a) < e

Assuming c to be an interior point of the domain S of a scalar field f ,
and v a vector such that c + v lies within a ball centered at c and contained
in S, f is differentiable at c if there exist a linear map (the total derivative)
Tc : Rn → R and a scalar function E : Rn × Rn → R such that f(c + v) =
f(c) + Tc(v) + ||v||E(c, v), where E(c, v) → 0 as ||v|| → 0.

Linear maps Rn → Rm are represented by Map, a NASALIB record whose
fields are n and m, and a function (in field mp) from n-vectors to m-vectors.
Functions v2r and sf2vf are introduced to convert from one-vectors to reals and
from functions [vect->real] to functions [vect->Vector[1]]. Differentiability
at a point c is then defined as:

differentiable_at?(f: Rn2R, c: vect): bool =

EXISTS (Tc: [vect -> Map(n, 1)], Ec: Rn2R): FORALL (v: vect):

f(c + v) = f(c) + v2r(Tc(c)‘mp(v)) + norm(v)*Ec(v)

AND lim(sf2vf(Ec), c) = zero

The difference quotient of f at c in the direction of u is defined as:

diffquot(f, c, u)(h): real = abs(f(c + h*u) - f(c))/(abs(h)*norm(u))

21

The directional derivative at a point c in the direction of vector u is then:

dderiv_at(f, c, (u: {u0: vect | norm(u0) = 1})): real =

lim(diffquot(f, c, u), 0)

PDERs can then be defined as directional derivatives:

pderiv_at(i, f, c): real = dderiv_at(f, c, u(i))

The above definitions sketch a basic theory of PD, but a full-fledged theory
at that level of abstraction would be of little use in the daily work of people
designing, say, a state-space model for a plant controller, as they need the familiar
textbook-style differentiation rules.

Elementary textbooks define the PDER Dif of a function f : Rn → R
with respect to xi at a point P0 = (x01, . . . , x0n) as the ordinary derivative of
the restriction ϕi : R → R of f to the set {x01, . . . , xi, . . . , x0n}, expressed as
“differentiate f with respect to xi, keeping the other variables constant”. Yet, the
PVS type checker does not allow a function of n variables to be treated as a
function of one variable, “keeping the other variables constant”. In this work,
we formalize the concept of restriction with the PVS overriding operator and
define a few predicates using the NASALIB function deriv:

restrcn?(i, phi, f, P): bool = FORALL(r:real): phi(r) = f(P WITH[(i):=r])

pder_at?(i: Index[n], pd_at: Rn2R, f: Rn2R, p: vect): bool =

EXISTS (phi, dphi: R2R): restrcn?(i, phi, f, p) AND

dphi = deriv(phi) AND restrcn?(i, dphi, pd_at, p)

pder?(i, pd, f): bool = EXISTS (p: vect): pder_at?(i, pd, f, p)

The correctness of a PD Dif can be proved as follows:

1. write the definitions of f (e.g., f) and Dif (df x),

2. choose an uninterpreted constant point P ;

3. write ϕi (phi x) and ϕ′
i (dphi x), the restrictions at P of f and Dif wrt xi;

4. verify that ϕ′
i is the ordinary derivative of ϕi:

lem1: LEMMA dphi_x_f = deriv(phi_x_f)

5. verify that ϕi and ϕ′
i are the restrictions of f and Dif :

restr_phi_x_f: LEMMA restrcn?(0, phi_x_f, f, P)

restr_dphi_x_f: LEMMA restrcn?(0, dphi_x_f, df_x, P)

6. verify that Dif is the PDER of f :

pder_df_x_f: LEMMA pder?(0, df_x, f)

It should be stressed that, to verify that ϕi is a restriction of f at P with
respect to xi, a user must instantiate P as an uninterpreted constant. This is
crucial for the soundness of this procedure. The PVS environment currently
does not provide means to verify if a constant symbol is uninterpreted or it
represents a concrete numerical value, so it is the user’s responsibility to apply
the procedure correctly. It is acknowledged that this is a major loophole in the
procedure.

22

5 Discussion and Further Work

This paper has introduced a proof-of-concept PVS theory aimed at supporting
PD of scalar fields. Its main objective is to provide practical means to verify
results of PD in the context of complex systems, in the PVS environment. The
verification procedure has been devised to circumvent the constraints imposed
by the PVS typechecker, by providing a quasi-formalization of the familiar def-
inition of PD in terms of ordinary differentiation. Unfortunately, this approach
requires the user to define a vector of uninterpreted constants to replace the vari-
ables “kept constant”. An inadvertent user might choose a vector of interpreted
constants, like, say, (0, 0, 0), which clearly would make the procedure unsound.
At the moment, two approaches are possible: (i) a formalization of PD from first
principles, or (ii) a modification of the PVS prover. The first approach would re-
quire a great effort, and it could not reuse the simple differentiation rules already
available in PVS. The second one is probably easier, requiring the developers of
the PVS prover to make the property of uninterpretedness accessible in some
way. Or, a prover rule to produce “safe” restrictions of a multi-variable function
could be implemented.

References

1. Bernardeschi, C., Dini, P., Domenici, A., Saponara, S.: Co-simulation and verifica-
tion of a non-linear control system for cogging torque reduction in brushless motors.
In: Camara, J., Steffen, M. (eds.) Softw. Eng. and Formal Methods SEFM 2019.
pp. 1–6. LNCS, Springer (2020). https://doi.org/10.1007/978-3-030-57506-9 1

2. Bernardeschi, C., Dini, P., Domenici, A., Palmieri, M., Saponara, S.: Formal veri-
fication and co-simulation in the design of a synchronous motor control algorithm.
Energies 13(16), 4057 (2020). https://doi.org/10.3390/en13164057

3. Bernardeschi, C., Domenici, A., Saponara, S.: Formal verification in the loop to
enhance verification of safety-critical cyber-physical systems. Electronic Commu-
nications of the EASST 77 (2019). https://doi.org/10.14279/tuj.eceasst.77.1106

4. Domenici, A., Bernardeschi, C.: A logic theory pattern for linearized control sys-
tems. Electronic Proceedings in Theoretical Computer Science 338, 46–52 (2021).
https://doi.org/10.4204/eptcs.338.7

5. Dutertre, B.: Elements of mathematical analysis in PVS. In: Goos, G., Hartma-
nis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) Theorem
Proving in Higher Order Logics, LNCS, vol. 1125, pp. 141–156. Springer (1996).
https://doi.org/10.1007/BFb0105402

6. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A.
(eds.) Automated Deduction - CADE-25. pp. 527–538. Springer, Cham (2015)

7. Gordon, M.J., Melham, T.F.: Introduction to HOL: A theorem proving environ-
ment for higher order logic. Cambridge University Press (1993)

8. Gottliebsen, H.: Automated theorem proving for mathematics: real analysis in
PVS. Ph.D. thesis, University of St Andrews (2002)

9. The Coq development team: The Coq proof assistant reference manual (2004)
10. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated

Reasoning 41, 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

23

Case studies of development of verified programs
with Dafny for accessibility assessment

João Pascoal Faria1,2[0000−0003−3825−3954] and Rui Abreu1,3[0000−0003−3734−3157]

1 Faculty of Engineering of the University of Porto, Porto, Portugal
{jpf,rma}@fe.up.pt

2 INESC TEC - Institute for Systems and Computer Engineering, Technology and
Science, Porto, Portugal

3 INESC ID, Lisbon, Portugal

Abstract. Formal verification techniques aim at formally proving the
correctness of a computer program with respect to a formal specification,
but the expertise and effort required for applying formal specification and
verification techniques and scalability issues have limited their practical
application. In recent years, the tremendous progress with SAT and SMT
solvers enabled the construction of a new generation of tools that promise
to make formal verification more accessible for software engineers, by
automating most if not all of the verification process. The Dafny system
is a prominent example of that trend. However, little evidence exists
yet about its accessibility. To help fill this gap, we conducted a set of
10 case studies of developing verified implementations in Dafny of some
real-world algorithms and data structures, to determine its accessibility
for software engineers. We found that, on average, the amount of code
written for specification and verification purposes is of the same order
of magnitude as the traditional code written for implementation and
testing purposes (ratio of 1.14) – an “overhead” that certainly pays off
for high-integrity software. The performance of the Dafny verifier was
impressive, with 2.4 proof obligations generated per line of code written,
and 24 ms spent per proof obligation generated and verified, on average.
However, we also found that the manual work needed in writing auxiliary
verification code may be significant and difficult to predict and master.
Hence, further automation and systematization of verification tasks are
possible directions for future advances in the field.

Keywords: Formal verification · Dafny · Accessibility · Case studies.

1 Introduction

1.1 Motivation

Given the increasing dependence of our society on software-based systems, it is
ever more important to assure their correct, secure and safe functioning, particu-
larly for high-integrity systems [boehm2006some]. Since software development
is a knowledge-intensive activity and software-based systems are increasingly

24

complex, errors are inevitable, so several techniques need to be applied along
the process to catch and fix defects as early as possible.

Testing and reviews are the most widely applied techniques in the software in-
dustry for defect detection. However, since “program testing can be used to show
the presence of bugs, but never to show their absence” [dijkstra1970notes],
testing alone cannot be considered sufficient for high-integrity systems. If prop-
erly applied [humphrey2000introduction], reviews are a cost-effective tech-
nique for defect detection and knowledge sharing, but, like with testing, they
cannot be used to show the absence of bugs.

By contrast, formal verification techniques aim at formally proving the cor-
rectness of a computer program, i.e., show the absence of defects. To that end,
we need a formal specification of the program intent and a logic reasoning frame-
work, usually based on Hoare logic [hoare1969axiomatic]. But the expertise
and effort required for applying formal specification and verification techniques
and scalability issues have limited their practical application. In recent years, the
tremendous progress with SAT and SMT solvers [vardi2016automated], such
as Z3 [moura2008z3], enabled the construction of a new generation of tools that
promise to make formal verification accessible for software engineers, like Dafny
[leino2017accessible], Frama-C [cuoq2012frama] and Why3 [filliatre2013why3],
by automating most if not all of the verification process. However, little evidence
exists yet about their accessibility, regarding the expertise and effort required to
apply them.

The authors have used formal specification languages and automated reason-
ing tools for several years in software engineering research, education, and prac-
tice [abreu2015using, rebello2012specification, campos2013encoding, diedrich2016applying,
lima2020local]. E.g., in [rebello2012specification], Alloy [jackson2012software]
was used to automatically generate unit tests and mock objects in JUnit4 from al-
gebraic specifications of generic types. Although model-based testing approaches
such as this one do not guarantee the absence of bugs, they provide a higher as-
surance than manual test generation and seem to be currently more accessible
than formal verification.

From an educational perspective, the authors are also interested in assessing
the feasibility of embedding computer-supported formal specification and veri-
fication techniques in undergraduate programs, namely in courses dedicated to
studying algorithms and data structures.

1.2 Objectives and Methodology

To help fill the gap in the current state of the art regarding accessibility stud-
ies, we conducted a set of case studies of developing verified implementations
in Dafny of some well-known algorithms and data structures of varying com-
plexity, with the goal of determining its accessibility for software engineering
practitioners, students and researchers, with limited training in formal methods.

4 https://junit.org/

25

Table 1 shows the list of case studies. The source code is available in GitHub5

and [https://doi.org/10.48550/arxiv.2301.03224]. The case studies explore
formal specification and verification features of increasing complexity. In the
paper, we provide some highlights for selected features. For each case study, we
collected a few metrics and lessons learned, to help answer our main question,
regarding Dafny accessibility. Those metrics and lessons learned are aggregated
and discussed at the end of the paper.

Table 1. List of case studies.

Category Case study

Numerical algo-
rithms

◦ Integer division (Euclidean division)
◦ Natural power of a number (divide and conquer algorithm)

Searching & sort-
ing algorithms

◦ Binary search
◦ Insertion sort

Collections
◦ Priority queue implemented with a binary heap
◦ Unordered set implemented with a hash table (Hash Set)
◦ Ordered set implemented with a binary search tree (Tree Set)

Matching prob-
lems

◦ Stable marriage problem solved by the Gale-Shapley algorithm
◦ Teachers placement problem reduced to stable marriage

Graph algo-
rithms

◦ Topological sorting (Khan’s algorithm
[kahn1962topological])

◦ Eulerian circuit (Hierholzer’s algorithm)

1.3 Structure of the Paper

Sec. 2 presents some highlights about specification and verification features of
increasing complexity in the case studies. Sec. 3 consolidates the metrics collected
and lessons learned, and draws conclusions regarding our research goal. Related
work is discussed in Sec. 4. Conclusions and future work are presented in Sec. 5.

2 Case Studies Highlights

2.1 An Introductory Example (Integer Division)

The self-explanatory program in Fig. 1 explores some basic features of Dafny
and serves as our first case study.

Dafny6 [leino2017accessible] is a multi-paradigm programming language
and system for the development of verified programs. The functional style is typi-
cally used for writing specifications, using value types and side-effect-free expres-
sions, functions, and predicates. The procedural and object-oriented styles are
5 https://github.com/joaopascoalfariafeup/DafnyProjects
6 https://github.com/dafny-lang/dafny

26

// Computes the quotient q and remainder r of the integer division

// of a (non-negative) dividend n by a (positive) divisor d.

method div(n: nat, d: nat) returns (q: nat, r: nat)

 requires d > 0

 ensures q * d + r == n && r < d

{

 q := 0;

 r := n;

 while r >= d

 decreases r

 invariant q * d + r == n

 {

 q := q + 1;

 r := r - d;

 }

}

// Main program, with a simple test case (checked statically!).

method Main() {

 var q, r := div(15, 6);

 assert q == 2 && r == 3;

 print "q=", q, " r=", r, "\n";

}

Fig. 1. A simple program in Dafny for performing integer division.

typically used for writing implementations, using reference types (arrays, classes,
etc.), and methods and statements with side effects. The Dafny programming
system comprises a verifier (based on Z3), compilers that produce code in several
target languages (C#, Java, JavaScript, Go, and C++), and an extension for
Visual Studio Code.

The semantics of a method (div in this case) is formally specified by means
of pre and postconditions, indicated with the requires and ensures clauses,
respectively. The Dafny verifier is in charge of checking (with the help of the
Z3 theorem prover) if such pre and postconditions are satisfied. When the im-
plementation involves a loop, the user has to provide a loop invariant (with
the invariant clause) and, in some cases, a loop variant (with the decreases
clause), to help the verifier accomplish its job.

The Main method is the entry point of a program in Dafny. In this example, it
exercises the div method for some inputs, and checks (with assert) and prints
the corresponding outputs. Like with pre and postconditions, assert statements
are checked statically by the Dafny verifier. In this example, the verifier will
try to prove the assertion based only on the postcondition of the div method
(i.e., the method body is opaque for this purpose); this makes the verification
modular and scalable. Since assertions are checked statically, test cases such as
the one shown do actually test the specification in pre-compile time, and not the
implementation at run-time; such static test cases are useful to detect problems
in the specification, e.g., incomplete postconditions.

27

All the specification constructs and assertions mentioned above (indicated
with the requires, ensures, invariant, decreases, and assert clauses) are
used as annotations for verification purposes only (during static analysis), but
are not compiled into the executable program, so do not cause runtime overhead.

2.2 Lemmas and Automatic Induction (Power of a Number)

In this case study, the goal is to prove the correctness of a well-known O(log n)
divide-and-conquer algorithm to compute the natural power of a real number
(xn). Self-explanatory excerpts are shown in Fig. 2 and the full code is avail-
able in GitHub. It illustrates the usage of lemmas, to specify properties that
Dafny alone cannot deduce, and automatic induction, i.e., the ability of Dafny
to automatically prove some properties by induction (directive :induction a).

// Recursive definition of x^n in functional style.

function power(x: real, n: nat) : real {

 if n == 0 then 1.0 else x * power(x, n-1)

}

// Computation of x^n in time and space O(log n).

method powerDC(x: real, n: nat) returns (p : real)

 ensures p == power(x, n)

{ ...

 if n % 2 == 0 {

 productOfPowers(x, n/2, n/2); // recall lemma

 var temp := powerDC(x, n/2);

 return temp * temp;

 } ...

}

// States the property x^a * x^b = x^(a+b), used by 'powerDC'.

// The property is proved by automatic induction on 'a'.

lemma {:induction a} productOfPowers(x: real, a: nat, b: nat)

 ensures power(x, a) * power(x, b) == power(x, a + b)

{/*Proof should go here, but is discovered by Dafny!*/}

Fig. 2. Excerpts of a program in Dafny for computing the natural power of a number.

2.3 Modules, Mutable Objects and Generics (Insertion Sort)

In this case study, we explore Dafny features for working with mutable objects
(in this case, arrays) and generics, and separating specification, implementation,
and test code with modules. Self-explanatory excerpts are shown in Fig. 3.

The array sorting problem is specified by the bodyless sort method in the
abstract module Sorting, resorting to auxiliary predicates. The frame condition
“modifies a” indicates that an implementation may modify the contents ref-
erenced by a. In the postcondition, “old(a[...])” and “a[..]” give the array

28

abstract module Sorting {

 type T = int // generics limitation!

 method sort(a: array<T>)

 modifies a

 ensures isSorted(a[..]) && isPermutation(a[..], old(a[..]))

}

module InsertionSort refines Sorting {

 method sort(a: array<T>) {...}

}

abstract module TestSorting {

 import opened Sorting

 method testSort () {

 var a := new T[] [9, 3, 6, 9];

 assert a[..] == [9, 3, 6, 9]; // proof helper!

 sort(a);

 SortingUniquenessProp(a[..], [3, 6, 9, 9]); //proof helper!

 assert a[..] == [3, 6, 9, 9];

 }

 lemma SortingUniquenessProp(a: seq<T>, b: seq<T>)

 requires isSorted(a) && isSorted(b) && isPermutation(a, b)

 ensures a == b

 { /* handwritten proof by induction goes here*/}

}

Fig. 3. Organization of an array sorting program in Dafny using modules.

contents at the begin and end of method execution, respectively, as mathemat-
ical sequences. Dafny has some support for generic predicates, functions and
methods, but, unfortunately, does not support type parameters that are subject
to operations other than equality (==); so, for demo purposes, we declared the
type of array elements with a specific type definition.

Sorting algorithms may be provided in concrete modules that refine the ab-
stract module, as in the InsertionSort module, inheriting the method contract
and providing the actual algorithm in the body (omitted here). In this case, we
just had to provide the loop invariants for the verifier to successfully check the
correctness of the insertion sort algorithm with respect to the specification.

The module TestSorting shows an example of a test case of the sort
method. For the Dafny verifier to successfully check the test outcome in the
last assert statement, we had to write an auxiliary lemma implying that the
outcome of sort is unique. Surprisingly, for the code to be checked success-
fully, we also had to provide some further “proof helper” assertions (as the first
assertion) stating trivial facts that we expected to be taken for granted.

2.4 State Abstraction and Automatic Contracts (Priority Queue)

In this case study, we explore Dafny features for separating specification and
implementation and handling class invariants in object-oriented programs, fol-

29

lowing design by contract (DbC) principles. Excerpts of the specification of a
priority queue and its implementation with a binary heap are shown in Fig. 3.

The operations’ pre and postconditions of the priority queue (top box in
Fig. 3) are specified independently of the internal state representation (a bi-
nary heap in this case), by resorting to a state abstraction function (elems).
This function gives the priority queue contents as a multiset (allowing repeated
values), and serves only for specification and verification purposes (doesn’t gen-
erate executable code); to keep the specification at a high level of abstraction,
it doesn’t tell the ordering of elements (which is given by deleteMax).

In a subsequent refinement (box at the center of Fig. 3), it is chosen an
internal (concrete) state representation - a binary heap stored in an array. It is
also provided an implementation (body) for each method (box at the bottom of
Fig. 4). The definition and verification of class invariants, stating restrictions on
the internal state to be respected at method boundaries, is facilitated in Dafny
with so-called automatic contracts, using the “:autocontracts” attribute. The
class invariant is specified in a predicate Valid; calls to that predicate, together
with some frame conditions, are automatically injected in the preconditions of
all methods and in the postconditions of all methods and constructors.

Thanks to the state abstraction function and the class invariant, the Dafny
verifier is able to automatically check the conformity of the methods’ imple-
mentation (defined in terms of the concrete state) against the methods’ pre and
postconditons (defined in terms of the abstract state), without further burden
from the user! We only had to define an auxiliary lemma, showing that the heap
invariant (indicated by the predicate Valid in Fig. 4) implies that the maximum
is at the top (array index 0).

2.5 Proof Techniques (Topological Sorting, Eulerian Circuit)

Not surprisingly, simple algorithms may require complex proofs, as illustrated in
the topological sorting case study. In fact, the Kahn’s algorithm [kahn1962topological]
can be encoded in just 6 lines of code (at a high level of abstraction), but, to
prove its correctness, we had to write 7 auxiliary lemmas, sketched in Fig. 5.
Fortunately, Dafny supports a rich variety of proof techniques and is able to fill
in most (if not all) of the proof steps, so we only had to provide key intermediate
steps, making the handwritten proof of each lemma rather short.

However, the way the proof steps are written may have a significant impact
on the verification time. E.g., in the Eulerian circuit case study, approximately
20 seconds were spent in the verification of a lemma stating that, if an Euler
trail r exists in a graph G (i.e., a path that traverses each edge of G exactly
once), then each vertex of G has an even number of adjacent vertices, except
for the first and last vertex in r in case they are different. The proof is done
by induction. By rewriting the inductive step so that the first edge is removed
from r and G instead of the last one (possibly better matching the structure of
recursive definitions needed in the proof), the verification time was reduced to
less than 1 second!

30

3 Results and Discussion

In this section, we summarize the metrics collected and lessons learned from the
case studies conducted, and draw some conclusions regarding our research goal.

3.1 Metrics Collected

Table 2 summarizes the metrics collected in the case studies. Size of the code
categories described in Table 3 is measured in physical lines of code (LOC),
ignoring blank lines and comments.

The execution times were measured in an Intel(R) Core(TM) i7-8750H CPU
@ 2.20GHz laptop with 6 cores and 16 GB RAM running Windows 10 Enterprise.
We used v2.1.1 of the Dafny extension for VS Code and version 3.3.0 of the Dafny
server and, in some cases, version 2.3.0 due to a bug with Z3 and Dafny v3 7.

Table 2. Results of the case studies (size, time and proof obligations).

Program Impl.
LOC

Test
LOC

Spec.
LOC

Verif.
LOC

Total
LOC

(S+V)/
(I+T)

Proof
Oblig.

Ver.Time
(sec.)

Integer Division 10 5 2 2 19 0.27 15 0.5
Power of a Number 17 7 4 5 33 0.38 45 0.5
Binary Search 15 7 7 3 32 0.45 51 0.5
Insertion Sort 13 13 10 21 57 1.19 90 1
Priority Queue 74 13 30 35 152 0.75 483 3
Hash Set 86 16 57 38 197 0.93 656 16
Tree Set 87 13 39 38 177 0.77 809 18
Stable Marriage 50 66 54 10 180 0.55 209 7
Topological Sorting 19 18 21 94 152 3.11 157 3
Eulerian Circuit 32 10 66 115 223 4.31 407 19
Total 403 168 290 361 1222 1.14 2922 69

Table 3. Code categories.

Category Description
Implemen-
tation

“Traditional”, compilable, implementation code (method signatures,
method bodies, data definitions, etc.).

Test Test code (checked statically or dynamically), including assertions.

Specification Specification of contracts, including requires and ensures clauses, class
invariants, frame conditions, and auxiliary definitions used in them.

Verification
Verification helper code, such as, lemmas and all non-compilable code
inside method bodies (loop variants, loop invariants, assertions, invo-
cation of lemmas, manipulation of ghost variables, etc.).

7 https://github.com/dafny-lang/dafny/issues/1498

31

On average, the amount of code written for formal specification (S) and
verification (V) purposes is of the same order of magnitude as the “traditional”
code written for implementation (I) and testing (T) purposes – an “overhead”
that certainly pays off, at least for high-integrity software. The average ratio is
(S+V)/(I+T)=1.14, ranging from 0.27 in the simplest case to 4.31 in the most
complex case. The pie chart of Fig. 6 shows a balanced size distribution, on
average, between the different code categories.

The overhead on user time is difficult to measure as it depends heavily on the
user experience. A fair assessment should be done in a different context (in the
case studies, the algorithms were known, but the verification strategies had to be
discovered in many cases). We believe that, with proper training, in cases where
new algorithms have to be designed, the specification and verification effort can
be of the same order of magnitude as the design, implementation, and test effort.

The number of proof obligations (POs) generated and checked by the Dafny
verifier is impressive, with 2.4 POs generated on average per LOC written (2922
POs/1222 LOC in Table 2), and 7.3 per implementation LOC (2922 POs/403
LOC in Table 2), in the case studies. The performance of the Dafny verifier was
also impressive, with 24 ms spent on average per PO generated and verified (69
sec/292 POs in Table 2), in this set of case studies.

However, based on the experience of the case studies, it is important to note
that the verification of some POs may be significantly higher, in the order of
minutes, or not even terminate. When that happens, with careful debugging
and refactoring (of assertions, verification code, etc.), one may usually reduce
the verification time drastically (as illustrated in the Euler Circuit case study).

3.2 Lessons Learned

The lessons learned from the case studies are summarized in Tables 4 and 5,
using a color scheme to highlight strengths and weaknesses. Overall, the Dafny
language and verifier proved to be very powerful, automating most of the ver-
ification work, with minor language limitations (regarding generics, automatic
contracts, and other aspects). Regarding our main research question, the major
difficulty we found is that the manual verification work may be significant and
difficult to predict and master in non-trivial programs.

32

Table 4. Lessons learned from the case studies (Part I).

Category Lessons learned (strengths and weaknesses)

Dafny
Lan-
guage

– Integrated language for writing specifications (methods’ pre and
postconditions), implementations (methods’ bodies), and verifica-
tion helper code (e.g., loop invariants)[ex: Integer Division].

– Rich set of logical quantifiers (forall, exists, etc.) and mathe-
matical collections (sequences, sets, multisets, maps, etc.), for writ-
ing specifications and assertions and describing complex algorithms at a
high level of abstraction [ex: Binary Search, Stable Marriage].

– Inductive data types and pattern matching expressions may be
used to keep the code at a high level of abstraction [ex: Hash Set].

– Null safety: reference types are not nullable unless they are marked
with the “?” suffix. [ex: Tree Set]

– Constructs to specify frame conditions and query the old object
state, when working with mutable objects [ex: Insertion Sort].

– Modules enable a clear separation between specification, implementa-
tion, and test code [ex: Insertion Sort].

– Limited support for generics: lack of support for type parameters that
are subject to operations other than equality [ex: Binary Search].

– The support for explicitly separating specification and implementation
and hiding implementation details in object-oriented programs has room
for improvement (e.g., there are no visibility modifiers) [ex: Tree Set].

Dafny
Com-
piler

– The Dafny compiler is able to generate executable code in multiple
target languages (in this case, only C# is explored).

– Assertions and other constructs used for specification & verification pur-
poses are not compiled, so they imply no runtime overhead.

Dafny
Verifier

– In many cases, the verifier is able to automatically check that the
implementation conforms to the specification, with minimal user
help (that may only have to write loop invariants) [ex: Integer Division].

– Dafny is frequently able to discover loop variants [ex: Binary Search].
– Outside of a method, the method body is opaque for verification pur-

poses (only the pre and postconditions matter), making the verification
process modular and scalable.

Manual
Verifi-
cation
Work

– Dafny effectively supports a rich variety of proof techniques (by de-
duction, by induction, by contradiction, by construction, calcu-
lational [leino2013verified]) [ex: Topological Sorting, Tree Set].

– Auxiliary properties may need to be defined by the user (as lemmas) to
help the verifier, but the proof itself may be greatly or totally automated,
with many details automatically filled in; discovering what properties
need to be defined is not trivial, though [ex: Power, Top. Sort.].

– It is difficult to predict when and what manual work will be
needed (beyond writing loop invariants) for a successful verification
[ex: Insertion Sort, Topological Sorting].

33

Table 5. Lessons learned from the case studies (Part II).

Category Lessons learned (strengths and weaknesses)

Auto-
matic
con-
tracts

– Dafny supports the definition and enforcement of class invariants,
especially using the ”:autocontracts“ attribute, also taking care of the
generation of appropriate frame conditions [ex: Priority Queue].

– Automatic contracts have room for improvement; in some cases, the user
may need to resort to lower level features [ex: Tree Set, Hash Set].

– Getting the contracts right in classes that represent self-referencing data
structures may be rather tricky [ex: Tree Set].

– There are apparent conflicts between inheritance and automatic con-
tracts [ex: Priority Queue].

State
Abstrac-
tion

– State abstraction functions (ghost functions) allow specifying the
semantics (pre/postconditions) of the services provided by a class inde-
pendently from the implementation (method bodies and internal state
representation) [ex: Priority Queue].

– State abstraction may also be accomplished through abstract state
variables (ghost variables), whose abstraction relation to the concrete
state variables is specified in the class invariant [ex: Hash Set].

Testing

– Testing is still relevant, but mainly for statically testing the specifi-
cation, and not dynamically testing the implementation (proved to be
correct with respect to the specification) [ex: Integer division, Ins. Sort].

– Test cases that allow multiple outputs can be easily specified and checked
[ex: Insertion Sort].

Debug-
ging and
Profiling

– When verification fails, the Dafny language and the Dafny verifier pro-
vide several convenient features for debugging purposes, such as the
assume statement and the “/tracePOs” option [ex: Eulerian Circuit].

– When the verification time is high, most of the time may be concentrated
on one or two assertions. By identifying and rewriting such assertions,
the verification time may be drastically reduced [ex: Eulerian Circuit].

3.3 Accessibility assessment

We distinguish three levels of competencies required for the development of ver-
ified programs in Dafny, with decreasing accessibility:

– basic: writing implementation and test code;
– intermediate: writing specifications (pre/post-conditions, frame conditions,

class invariants, and related predicates and functions), and loop variants and
invariants;

– advanced: identifying and writing the needed verification code, besides loop
variants and invariants (auxiliary lemmas, assertions, ghost variables, etc.).

The lessons learned and metrics collected in the case studies suggest that,
even in seemingly simple problems, the user may need to be skilled in advanced
verification techniques. Hence, despite the impressive improvements in auto-
mated program verification provided by Dafny, we claim that “we are very close

34

to, but not there yet” regarding the goal of making the development of verified
programs accessible for software engineering practitioners and students. Further
automation and systematization of verification tasks (including reusable libraries
of common properties and “how to” guides), and integration in mainstream lan-
guages, are possible directions for further work in the field.

Our assessment is corroborated by our experience in teaching a course on
“Formal Methods in Software Engineering”8 with 151 master students enrolled
in the 2020/21 academic year, with a very positive students feedback (average
score of 6 out of 7). Students with a high grade (≥ 85%) in a midterm exam
were invited to develop a project in Dafny, consisting in the development of a
verified implementation of an algorithm or data structure of medium complexity
(hash set, tree set, stable marriage, topological sorting, Eulerian circuit, and text
compression). Out of 28 students eligible, 14 picked the challenge, but only 9
delivered, and none met the goals fully. We should note that the classes on formal
specification and verification (4 hours per week during 6 weeks) only superficially
addressed advanced verification techniques, and the students had a relatively
short time to do the project (1 month). This experience led us to conclude that
more advanced training is required to prepare interested students to handle non-
trivial specification and verification problems using Dafny or similar systems.

4 Related Work

In [farrell2021using], the authors report their experience of using Dafny at the
VerifyThis 2021 program verification competition, which aims to evaluate the us-
ability of logic-based program verification tools in a controlled experiment, chal-
lenging both the verification tools and the users of those tools. They tackled two
of the proposed challenges, and, as a result, identify strengths and weaknesses of
Dafny in the verification of relatively complex algorithms. Some strengths men-
tioned are: Dafny’s ability to prove termination and memory safety with little
input; built-in value types, such as sets, sequences, multisets, and maps; pred-
icates and lemmas for more concise specifications; automatic induction; ghost
variables and functions. They found it difficult to verify properties of possibly
null objects, among other difficulties, impeding them from completing all the
tasks on time.

In [furia2015autoproof] the authors argue that formal verification tools
are often developed by experts for experts; as a result, their usability by pro-
grammers with little formal methods experience may be severely limited. They
present their experiences with AutoProof (a tool that can verify the functional
correctness of object-oriented software in Eiffel) in two contexts representative
of non-expert usage. First, they discuss its usability by students in a graduate
course on software verification, who were tasked with verifying implementations
of various sorting algorithms. Second, they evaluate its usability in verifying
code developed for programming assignments of an undergraduate course. They
8 https://sigarra.up.pt/feup/en/UCURR_GERAL.FICHA_UC_VIEW?pv_ocorrencia_
id=459493

35

report their experiences and lessons learned, from which they derive some sug-
gestions for improving the usability of verification tools. They report an average
1.3 ratio between the number of tokens in specification and verification annota-
tions and implementation code, in two small programs. In spite of the differences
in context and measurement units, that ratio is of the same order of magnitude
as ours.

In [noble2022more] the authors refer that formal methods are often resisted
by students due to perceived difficulty, mathematicity, and practical irrelevance.
They redeveloped their software correctness course by taking a programming
intensive approach, using Dafny to provide instant formative feedback via au-
tomated assessment, which resulted in increased student retention and course
evaluation. Although very positive overall, their students found Dafny difficult
to learn and use, and the informal observations of the authors are that many
of those difficulties stem from “accidental” complexity introduced by the Dafny
tool. They propose some changes to Dafny’s design to tackle some issues found
related to program testing, verification debugging, and class invariants, among
others.

5 Conclusions and Future Work

We conducted a set of case studies of developing verified implementations in
Dafny of some real-world and well-known algorithms and data structures, with
the goal of determining its accessibility for software engineering students, practi-
tioners and researchers. We concluded that, despite the impressive improvements
in automated program verification provided by Dafny, the manual work needed in
writing auxiliary verification code may be significant and difficult to predict and
master. Further automation and systematization of verification tasks (including
reusable libraries of common properties and “how to” guides), and integration in
mainstream languages, are possible directions for further work in the field. We
also intend to conduct further studies with other verifiers and problems.

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency,
FCT — Fundação para a Ciência e a Tecnologia within project EXPL/CCI-
COM/1637/2021.

36

class {:autocontracts} PriorityQueue {

 function elems(): multiset<T> // State abstraction function

 constructor ()

 ensures isEmpty()

 predicate method isEmpty()

 ensures isEmpty() <==> elems() == multiset{}

 method insert(x : T)

 ensures elems() == old(elems()) + multiset{x}

 method deleteMax() returns (x: T)

 requires ! isEmpty()

 ensures isMax(x,old(elems())) && elems()==old(elems())-multiset{x}

}

// Concrete state representation

var heap: array<T>;

var size : nat;

// State abstraction function

function elems(): multiset<T> { multiset(heap[..size]) }

// Class invariant (heap invariant)

predicate Valid() {

 // valid size && each node is less or equal than its parent

 size<=heap.Length && forall i :: 1<=i<size ==> heap[i]<=heap[(i-1)/2]

}

// Inserts a value x in the heap.

method insert(x : T)

 ensures elems() == old(elems()) + multiset{x}

{

 // if needed, grows the array

 if size == heap.Length { grow(); }

 // Place at the bottom

 heap[size] := x;

 size := size + 1;

 // Move up as needed in the heap

 heapifyUp();

}

Fig. 4. Excerpts of a specification (top) of a priority queue and its implementation
(center and bottom) with a binary heap in Dafny.

37

a non-empty acyclic graph must

have at least one vertex without

incoming edges (by contradiction)

Topological sorting of an acyclic

directed graph (Kahn’s algorithm)

removing a vertex v from an

acyclic graph G produces an

acyclic graph (by contradiction)

it is possible to generate a path of

any length n in a non-empty graph

G in which all vertices have

incoming edges (by construction)

given a path p in a non-empty

graph G, if the length of p

exceeds the number of vertices,

then G has cycles (by deduction)

the length of a sequence p

of distinct elements from a set

s cannot exceed the cardinality

of the set (by induction)

given a complex path p in a graph G,

there exists a simple path (without

repeated edges) in G from the first to

the last vertex in the p (by induction)

if there is a path from u to v in a

graph G then a path from u to v

also exists in any super-graph

G' of G (by induction)

Fig. 5. Lemmas and proof techniques used to prove the correctness of Kahn’s algorithm.

Impl. LOC

33%

Test LOC

14%

Verif. LOC

29%

Spec. LOC

24%

Code size (LOC) distribution

Fig. 6. Code size (LOC) distribution.

38

TPGen: A Self-Stabilizing GPU-Based Method
for Test and Prime Paths Generation

Ebrahim Fazli1 and Ali Ebnenasir2

1 Department of Computer Engineering, Zanjan Branch, Islamic Azad University,
Zanjan, Iran

efazli@znu.ac.ir
2 Department of Computer Science, Michigan Technological University, Houghton MI

49931, USA
aebnenas@mtu.edu

Abstract. This paper presents a novel scalable GPU-based method for
Test Paths (TPs) and Prime Paths (PPs) Generation, called TPGen,
used in structural testing and in test data generation. TPGen outper-
forms existing methods for PPs and TPs generation in several orders of
magnitude, both in time and space efficiency. Improving both time and
space efficiency is made possible through devising a new non-contiguous
and hierarchical memory allocation method, called Three-level Path Ac-
cess Method (TPAM), that enables efficient storage of maximal simple
paths in memory. In addition to its high time and space efficiency, a
major significance of TPGen includes its self-stabilizing design where
threads execute in a fully asynchronous and order-oblivious way with-
out using any atomic instructions. TPGen can generate PPs and TPs of
structurally complex programs that have an extremely high cyclomatic
and/or Npath complexity.

Keywords: Prime Path · Test Path · GPU Programming

1 Introduction
This paper presents a scalable GPU-based method for the Generation of all Test
Paths (TPs) and Prime Paths (PPs), called TPGen, for structural testing. Com-
plete Path Coverage (CPC) is an ideal testing requirement where all execution
paths in a program are tested. However, such coverage may be impossible be-
cause some execution paths may be infeasible, and the total number of program
paths may be unbounded due to loops and recursion. Lowering expectations,
one would resort to testing all simple paths, where no vertex is repeated in a
simple path, but the Control Flow Graph (CFG) of even small programs may
have an extremely large number of simple paths. Amman and Offutt [1] propose
the notion of Prime Path Coverage (PPC), where a prime path is a maximal
simple path; a simple path that is not included in any other simple path. PP
coverage is an important testing requirement as it subsumes other coverage cri-
teria (e.g., branch coverage) in structural testing. As such, finding the set of all
PPs of a program (1) expands the scope of path coverage, and (2) enables the

39

generation of Test Paths (TPs), which are very important in test data genera-
tion. This paper presents a scalable approach for the generation of PPs and TPs
in structurally complex programs.

Despite the crucial role of PPC in structural testing, there are a limited num-
ber of methods that offer effective and efficient algorithms for generating PPs
and TPs for complex real-world programs. Amman and Offutt [2] propose a dy-
namic programming solution for extracting all PPs. Dwarakanath and Jankiti [6]
utilize Max-Flow/Min-Cut algorithms to generate minimum number of TPs that
cover all PPs. Hoseini and Jalili [10] use genetic algorithms to generate PPs/TPs
of CFGs extracted from sequential programs. Sayyari and Emadi [14] exploit ant
colony algorithms to generate TPs covering PPs. Sirvastava et al. [15] extract
a Markov chain model and produce an optimal test set. Bidgoli et al. [4] apply
swarm intelligence algorithms using a normalized fitness function to ensure the
coverage of PPs. Lin and Yeh [11] and also Bueno and Jino [5] present methods
based on genetic algorithm to cover PPs. Our previous work [8] generates PPs
and TPs in a compositional fashion where we separately extract the PPs of each
Strongly Connected Component (SCC) in a CFG, and then merge them towards
generating the PPs of the CFG. Most aforementioned methods are applicable
to simple programs and cannot be utilized for PP coverage of programs that
have a high structural complexity; i.e., very large number of PPs. This paper
exploits the power of GPUs in order to provide a time and space efficient parallel
algorithm for the generation of all PPs.

Contributions: The major contributions of this paper are multi-fold. First,
we present a novel high-performance GPU-based algorithm for PPs and TPs
generation that works in a self-stabilizing fashion. The TPGen algorithm first
generates the component graph of the input CFG on the CPU and then processes
each vertex of the component graph (each SCC) in parallel on a GPU. TPGen
is vertex-based in that each GPU thread Ti is mapped to a vertex vi and a list li
of partial paths is associated with vi. Each thread extends the paths in li while
ensuring their simplicity. The execution of threads is completely asynchronous.
Thread Ti updates li based on the extension of the paths in the predecessors
of vi, and removes all covered simple paths from li. The experimental evalua-
tions of TPGen show that it can generate all PPs of programs with extremely
large cyclomatic [12] and Npath complexity [13] in a time and space efficient
way. Cyclomatic Complexity (CC) captures the number of linearly independent
execution paths in a program [12]. Npath complexity is a metric for the number
of execution paths in a program while limiting the loops to at most one itera-
tion [13]. TPGen outperforms existing sequential methods up to 3.5 orders of
magnitude in terms of time efficiency and up to 2 orders of magnitude in space
efficiency for a given benchmark. TPGen achieves such efficiency while ensuring
data race-freedom without using ‘atomic’ statements in its design. Moreover, TP-
Gen is self-stabilizing in the sense that the GPU threads start in any order. Our
notion of self-stabilization provides robustness against arbitrary initialization of
TPGen where the order of execution of threads is arbitrary. This is different
from traditional understanding of self-stabilization where an algorithm recovers

40

if perturbed by transient faults. TPGen threads generate PPs without any kind
of synchronization with each other, or with the CPU. Such lack of synchroniza-
tion significantly improves time efficiency but is hard to design due to the risk
of thread interference. As a result, we consider the design of TPGen as a model
for other GPU-based algorithms, which by itself is a novel contribution. Sec-
ond, we propose a non-contiguous and hierarchical memory allocation method,
called Three-level Path Access Method (TPAM), that enables efficient storage
of maximal simple paths. We also put forward a benchmark of synthetic pro-
grams for evaluating the structural complexity of programs and for experimental
evaluation of PPs/TPs generation methods.

Organization. Section 2 defines some basic concepts. Section 3 states the
PPs generation problem. Subsequently, Section 4 presents the TPAM method
of memory allocation. Section 5 puts forward a highly time and space-efficient
parallel algorithm implemented on GPU for PPs generation. Section 6 presents
our experimental results. Section 7 discusses related work. Finally, Section 8
makes concluding remarks and discusses future extensions of this work.

2 Preliminaries

This section presents some graph-theoretic concepts that we utilize throughout
this paper. A directed graph G = (V,E) includes a set of vertices V and a set of
arcs (vi, vj) ∈ E, where vi, vj ∈ V . A simple path p in G is a sequence of vertices
v1, · · · , vk, where each arc (vi, vi+1) belongs to E for 1 ≤ i < k and k > 0, and no
vertex appears more than once in p unless v1 = vk. A vertex vj is reachable from
another vertex vi iff (if and only if) there is a simple path that emanates from vi
and terminates at vj . A SCC in G is a sub-graph G′ = (V ′, E′), where V ′ ⊆ V
and E′ ⊆ E, and for any pair of vertices vi, vj ∈ V ′, vi and vj are reachable
from each other. Tarjan [16] presents a polynomial-time algorithm that finds the
SCCs of the input graph and constructs its component graph. Each vertex of the
input graph appears in exactly one of the SCCs. The result is a Directed Acyclic
Graph (DAG) whose every vertex is an SCC. A Control Flow Graph (CFG)
models the flow of execution control between the basic blocks in a program,
where a basic block is a collection of program statements without any conditional
or unconditional jumps. A CFG is a directed graph, G = (V,E). Each vertex
v ∈ V corresponds to a basic block. Each edge/arc e = (vi, vj) ∈ E corresponds
to a possible transfer of control from block vi to block vj . A CFG often has a start
vertex that captures the block of statement starting with the first instruction of
the program, and has some end vertices representing the blocks of statements
that end in a halt/exit/return instruction. (We use the terms ‘arc’ and ‘edge’
interchangeably throughout this paper.) Figure 1 illustrates an example method
as well as its corresponding CFG (adopted from [3]) for a class in the Apache
Commons library.

Definition 1 (PP). A PP is a maximal simple path in a directed graph; i.e.,
a simple path that cannot be extended further without breaking its simplicity
property (e.g., PP ⟨2, 3, 4, 8, 2⟩ in Figure 1(b)).

41

Definition 2 (TP). A path p from vs to vt is a TP iff vs is the Start vertex of
G and vt is an End vertex in G. (e.g., the path ⟨Start, 1, 2, 3, 4, 8, 2, 9, End⟩ in
Fig 1(b))

Definition 3 (CompletePP). A PP p from vs to vt is a CompletePP iff
vs is the Start vertex of G and vt is an End vertex in G. (e.g., the PP
⟨Start, 1, 2, 3, 5, 7, End⟩ in Fig 1(b))

Definition 4 (Component Graph of CFGs). The component graph of a
CFG G = (V,E), called CCFG, is a DAG whose vertices are the SCCs of G,
and each arc (vi, vj) ∈ E starts in an SCCi and ends in a distinct SCCj (see
Fig 2(b)).

Start: private static int binarySearch0 (long[] a, int fromI, int toIndex, long key) {

1: int low = fromIndex;

1: int high = toIndex - 1;

2: while (low <= high) {

3: int mid = (low + high) >>> 1;

3: long midVal = a[mid];

3: if (midVal < key)

4: low = mid + 1;

5: else if (midVal > key)

6: high = mid - 1;

7: else

7: return mid; // key found

8: }

9: return -(low + 1); // key not found.

End: }

(a) java.util.Arrays.binarySearch0()

Start

1

3

4
5

9

End

2

8

6

7

(b) CFG for method (a)

Fig. 1. example method and corresponding CFG

Since this paper presents a parallelized version of the method in [8], we rep-
resent a summary of the major steps of the algorithm of [8], illustrated in Figure
3: (1) compute the component graph of the input CFG, denoted CCFG; (2)
generate the set of PPs of CCFG and the set of PPs of each individual SCC in
CCFG; (3) extract different types of intermediate paths of each SCC, and (4)
merge the PPs of SCCs to generate all PPs of the original input CFG. Exper-
imental evidence [8] indicates that the most time consuming step is the second
one (i.e., PP generation) where we generate the internal PPs of each individual
SCC. This is due to cyclic structure of SCCs. To resolve this bottleneck, we
present an efficient parallel algorithm in Section 5.

3 Problem Statement
Generating PPs and TPs of the control flow graphs related to real world pro-
grams with a large Npath complexity is an important problem in software struc-

42

Start

1

3

45

9

End

2

8

6
7

SCC1

SCC1 EntryVertex

SCC1 ExitVertex

(a) Extracted SCC

Start

1

9

End

SCC1

7

(b) CCFG

Fig. 2. SCC and CCFG extracted from CFG for Fig 1(b)

tural testing. These types of graphs have a huge number of PPs and processing
them under conventional algorithms on CPUs requires a lot of time. Thus, it
is necessary to develop algorithms that address this problem and maintain the
accuracy of the PP generation. In a graph-theoretic setting, the PPs generation
problem can be formulated as follows:

Problem 1 (PPs Generation).

– Input: A graph G = (V,E) that represents the CFG of a given program, a
start vertex s ∈ V and an end vertex e ∈ V .

– Output: The set of PPs finished at each vertex v ∈ V and the set of TPs
covering all PPs.

In principle, the number of PPs could be exponential. However, testers should
ideally work with a minimum number of TPs that provide a complete PP cov-
erage. Since finding the minimum number of TPs that provide complete PP
coverage is hard, we focus on generating a small number of TPs, where each TP
covers multiple PPs. For example, consider the second TP in the first column
of Table 1 that covers six PPs in the second column of Table 1 (illustrated by
the bold fonts). Notice that, this TP starts from the Start node (in Figure 2(a)),
iterates twice in the loop 2-3-4-8-2, and exits through the nodes 5, 7 and End.
Figuring out that such a TP can cover six PPs by going through the loop 2-3-
4-8-2 twice is non-trivial for human testers. Moreover, generating such TPs is
impossible without extracting all PPs. Thus, it is important to efficiently solve
Problem 1. We emphasize that testers generate test data only for TPs.

In practice, solving Problem 1 is more costly when the input graph is an
SCC because every vertex is reachable from any other vertex in an SCC. For
this reason, Section 5 proposes a parallel GPU-based algorithm that extracts
the PPs of SCCs in a time and space efficient fashion. The in-degree of s is 0,

43

SCCs Extraction

SCCs’ Internal Prime Path Generation

Component Control Flow Graph (CCFG)

CCFG’s Prime Path Generation

Extraction of partial paths from/to entry/exit vertices of SCCs

Complete PPs Generation

Prime Paths from/to SCCs Generation

Program Control Flow Graph

Preprocessing

Generation

Path extraction

Merging

Total PPs of the programTest Paths covering PPs of the program

Fig. 3. Overview of the compositional method of [8].

Table 1. TPs and PPs generated for Fig.1(b)

Test Paths Prime Paths
{0,1,2,3,5,6,8,2,3,5,6,8,2,3,5,7,10} {8,2,3,4,8}{4,8,2,3,4}{2,3,4,8,2}{4,8,2,3,5,6}
{0,1,2,3,4,8,2,3,4,8,2,3,5,7,10} {5,6,8,2,3,5} {0,1,2,3,5,6,8} {3,5,6,8,2,9,10}

{0,1,2,3,5,6,8,2,3,4,8,2,9,10} {2,3,5,6,8,2} {4,8,2,3,5,7,10} {3,4,8,2,9,10}
{0,1,2,3,4,8,2,3,5,6,8,2,9,10} {6,8,2,3,5,7,10} {3,5,6,8,2,3} {0,1,2,3,4,8}

{0,1,2,3,5,7,10} {3,4,8,2,3} {6,8,2,3,5,6} {8,2,3,5,6,8}
{0,1,2,9,10} {5,6,8,2,3,4} {0,1,2,3,5,7,10} {0,1,2,9,10}

and out-degree of e is 0. We focus on CFGs where all vertices v ∈ V except e
have a maximum out-degree of 2. Without loss of generality, we can convert a
vertex v with an out-degree greater than 2 (i.e, switch-case structure) to vertices
with out-degree 2 by adding some new intermediate vertices between v and its
successor vertices. (See details in [9])

4 Data Structures
In this section, we present a data structure for storing the input CFG (Section
4.1), a path data structure (Section 4.2), and a novel memory allocation method
(Section 4.3) for storing the generated PPs.

4.1 CFG Data Structure
A matrix is usually stored as a two-dimensional array in memory. In the case of a
sparse matrix, memory requirements can be significantly reduced by maintaining

44

only non-zero entries. Depending on the number and distribution of non-zero en-
tries, we can use different data structures. The Compressed Sparse Row (CSR,
CRS or Yale format) [7] represents a matrix by a one-dimensional array that
supports efficient access and matrix operations. We employ the CSR data struc-
ture (see Figure 4) to maintain a directed graph in the global memory of GPUs,
where vertices of the graph receive unique IDs in {0, 1, · · · , |V | − 1}. To repre-
sent a graph in CSR format, we store end vertices and start vertices of arcs in
two separate arrays EndV and StartV respectively (see Figure 4). Each entry in
EndV points to the starting index of its adjacency list in array StartV. We assign
one thread to each vertex. That is, thread t is responsible for the vertex whose
ID is stored in EndV[t], where {0 ≤ t < |V | − 1} (see Figure 4). For example,
Figure 4 illustrates the CSR representation of the graph of Figure 1(b). Since the
proposed algorithm computes all PPs ending in each vertex v ∈ V , maintaining
the predecessor vertices is of particular importance. In CSR data structure, first
the vertex itself and then its predecessor vertices are stored.

4.2 Path Structure

We utilize a set of flags to keep the status of each recorded path along with each
vertex (see Figure 5). Let vi be a vertex and p be a path associated with vi. The
PathValidity flag (p[0]) indicates whether or not the recorded information repre-
sents a simple path. The PathExtension flag (p[1]) means that the current path
is an extended path; hence not a PP. We assume each non-final vertex can have
a maximum of two successor vertices. We use the LeftSuccessor (p[2]) and the
RightSuccessor (p[3]) flags to indicate whether the thread of each corresponding
successor has read the path ending in vertex vi. Once one of those successor
threads reads the path ending in vi it will mark its flag. In each iteration of
the algorithm, paths with marked extension and marked successor flags will be
pruned. We set the CyclicPath flag (p[4]) if p is a cyclic path. If p is cyclic, then
it will no longer be processed by the successor threads of v and is recorded as a
PP at the vi. (see Figure 5).

0 1 2 3

0

EndV

StartV

0

Threads

0 1 2 3 |V|-1|V|-2

0 1 2 3

4

4

5

5

6 7 8

|V|-1|V|-2

0 1 3

4

4

5

5

6 7 8

6 7 8 9 10

6 7 8 10 11

0 1 2 3 |E|-1|E|-24 5 6 7 8 9 10

1 8 2 3 3 5 5 4 6 2 7 90

Vertices with in-degree > 1
{2, 8, 11}

Vertices with out-degree = 2
{2, 3, 5}

Note: each index v in EndV points to first index including predecessors of v in StartV

Fig. 4. Compressed Sparse Row (CSR) graph representation of Figure 1(b)

45

Note: Since there is a unique thread associated to each vertex, we use the
terms "successor" and "predecessor" for both vertices and threads.

4.3 Three-level Path Accessing Method (TPAM)

In each CFG, the extraction of the PPs is based on the generation of the simple
paths terminated in each vertex vi ∈ V . There is a list associated to each vertex
vi, denoted vi.list to record all generated PPs ending in vi. To implement this
idea, all acyclic paths ending in predecessors of vi must be copied to the list of the
vertex vi. For a large CFG, the number of such paths could be enormous, which
would incur a significant space cost on the algorithm. To mitigate this space
complexity, we introduce a non-contiguous memory allocation method with a
pointer-based Three-level Path Accessing Method (TPAM). TPAM is a path
accessing scheme which consists of three levels of address tables in a hierarchical
manner. The entries of Level 1 address table with length |V | are pointers to each
vi.list at Level 2 address tables. Level 2 address tables contain addresses of all
paths stored in each vi.list. The entries of the last level tables are actual paths
information in memory (see Figure 6).

All activities such as compare, copy, extend and delete are applied to the
paths of each vertex. Let vi be a vertex in V and p be a path in vi.list. To
access path p, the start address of the vi.list is discovered from the first array
(i.e, Path[vi]). The start address of path p is stored in Table 2 (i.e, Path[vi][p]).
The list of vertices of path p is in Table 3, which according to path structure
mentioned in Figure 5, all activities can be done on the elements of the path
(i.e, Path[vi][p][5] shows the length of the path p).

Path Validity

Path Extension

Left Successor

R
ight Successor

0 1 2 3

C
yclic Path

Path Length

4 5 6

. . .

|V|+4 |V|+5

Fig. 5. Path structure

Instead of using malloc in allocating host memory, we call CUDA to cre-
ate page-locked pinned host memory. Page-Locked Host Memory for CUDA
(and other external hardware with DMA capability) is allocated on the physical
memory of the host computer. This allocation is labeled as non-swappable (not-
pageable) and non-transferable (locked, pinned). This memory can be accessed
with the virtual address space of the kernel (device). This memory is also added
to the virtual address space of the user process to allow the process to access it.
Since the memory is directly accessible by the device (i.e., the GPU), the write
and read speeds are high bandwidth. Excessive allocation of such memory can
greatly reduce system performance as it reduces the amount of memory avail-

46

0 1 2 |V|+5

int**

int*

3 4 5

int***

0 1 2 3 |V|-1|V|-2

0 1 3 |V|-1|V|-2

00

1

2

3

. . .

. . .

. . .

0 1 2 |V|+53 4 5
. . .

. . .

Address table
Level 1

Address table
Level 2

Paths table
Level 3

00

1

2

3

. . .

2

00

1

2

3

. . .

00

1

2

3

. . .

Fig. 6. Three-level Path Accessing Method (TPAM).

able for paging, but proper use of this memory allocation method provides a
high performance data transfer scheme.

5 GPU-based Prime Paths Generation
In order to scale up PPs generation, this section presents a parallel composi-
tional method that provides better time efficiency in comparison with existing
sequential methods for PPs generation. Specifically, we introduce a GPU-based
PPs generation algorithm. The input of the PP generation algorithm (Algorithm
1) includes a CFG representing the Program Under Test (PUT). The output of
Algorithm 1 is the set of all PPs finished at each vertex vi ∈ V .

A GPU-based CUDA program has a CPU part and a GPU part. The CPU
part is called the host and the GPU part is called the kernel, capturing an array
of threads. The proposed algorithm includes one kernel. The host (i.e., CPU)
initializes the vi.list of all vi and an array of boolean flags, called PublicF lag,
where PublicF lag[vi] = true indicates that the predecessors of vertex vi have
been updated and so the vi.list needs to be updated. One important objective is
to design a self-stabilizing algorithm with no CPU-GPU communications, thus
the host launches the kernel Update-Vertex (i.e., Algorithm 1) only once. The
proposed algorithm is implemented in such a way that there is no need for
repeated calls to synchronize different threads. One of the major challenges in
parallel applications that drastically reduces their efficiency is the use of atomic
instructions. Atomic instructions are executed without any interruption, but
greatly reduce the efficiency of parallel processing. The self-stabilizing device
(i.e., GPU) code in this section is implemented without using atomic instructions.

Algorithm 1 forms the core of the kernel, and performs three kinds of pro-
cessing on each vertex vi ∈ V : pruning the extended paths in vi.list, extending
acyclic simple paths in the lists of predecessors of vi, and examining the termi-
nation of all backward reachable vertices from vi. Lines 2 to 8 in Algorithm 1

47

remove extra paths from vi.list. A path p ∈ vi.list is extra if it is extended by
one of the vi’s successor(s) or covered by another path p′ ∈ vi.list.

Algorithm 1 Update-Vertex(vi, G = (V,E))
1: while (vi.PublicF lag = true) do
2: for each path p ∈ vi.list do
3: if p has been read by both successors then
4: if (p is an extended path) or (p is already included in some path p′ ∈
vi.list) then

5: remove p;
6: end if
7: end if
8: end for
9: for each vj where (vj , vi) ∈ E do // Read from predecessors.

10: for each path q ∈ vj .list do // PathValidity flag
11: if q is not read by vi then
12: Label q as read by vi; // Left or Right Successor flag
13: if (q is not a cycle) and (vi does not appear in q or vi is the first

vertex of q) then
14: ExtendPath (q,vi);
15: Label q as an extended path; // PathExtension flag
16: end if
17: end if
18: end for
19: end for
20: vi.LocalF lag = false;
21: for each path p ∈ vi.list do
22: if p is not read by both successors then
23: vi.LocalF lag = true;
24: end if
25: end for
26: if vi.LocalF lag = false then // all paths in vi.list have been read by both

v′is successors
27: vi.PublicF lag = false;
28: for each vk where vi is Reachable from vk do
29: if vk.PublicF lag = true then
30: vi.PublicF lag = true;
31: end if
32: end for
33: end if
34: end while

Lines 9 to 19 extend eligible acyclic simple paths in the lists of all prede-
cessor vertices of vi. Suppose that vj ∈ V is one of the vi’s predecessor. A path
q ∈ vj .list is an eligible path if q is not a cyclic path, and vi is the start vertex
of q in case vi already appeared in q. The thread assigned to vi runs a function
called ExtendPath (in Algorithm 2) to append the new eligible path to the vi.list.
In Lines 21 to 33, the thread of vi cannot be terminated if the vertex vi is not

48

the final vertex and has any unread paths in vi.list (Lines 21 to 25). Thread of
vi then examines the termination of all its backward reachable vertices by ex-
amining their PublicF lag. If all the ancestor vertices of vi are terminated, then
the vertex vi will also set its PublicFlag to false and exit the while loop (Lines
28 to 32). In fact, self-stabilization is achieved through localizing path extension
to each thread, but making sure that any change in ancestors of a vertex will
eventually propagate to it.

We devise Algorithm 2 to append a new simple path to the list of a given
vertex. This algorithm takes a path p as well as a specified vertex v as inputs.
Algorithm 2 first adds the vertex v at the end of the path p and increments the
length of p (Lines 2 and 3). Then, it checks the occurrence of vertex v as the
first vertex of p. This property causes the new path p to be considered as a cycle
in vertex v (Lines 4 to 6). Finally, Algorithm 2 sets PathValidity flag of the new
path p to true and appends it to the end of v.list (Lines 7 and 8).

Algorithm 2 ExtendPath(Path[] p, Vertex v)
1: Path[] NewPath = p;
2: NewPath[5 + |p| + 1] = v;
3: NewPath[5] = p[5] + 1;
4: if v is the first vertex of p then
5: NewPath[4] = 1; // CyclicPath flag
6: end if
7: NewPath[0] = 1; // PathValidity flag
8: append NewPath to v.list;

Theorem 1. Algorithm 1 terminates, is data race free and finds all PPs.

Proof. Due to space constraints, we present a proof sketch and refer the readers
to the complete proof in [9]. To prove the termination of Algorithm 1, we show
that at some finite point in time, vi.LocalFlag and vi.PublicFlag will become false
for every vi ∈ V and will remain false. As such, when PublicFlag of all vertices
in vi.ReachedFrom are set to false, the thread assigned to vi will eventually stop.
When no more extensions occur for any vertex, Algorithm 1 terminates. To
prove data race freedom, we show that neighboring threads cannot perform
read and write operations on the same path simultaneously. Consider two arcs
(vj , vi) and (vi, vk) in the input CFG. A data race could arise when the thread
of vk reads a path p in vi.list in Line 12 and at the same time the thread of vi
may be removing p in Line 5. However, this cannot occur because thread of vi
removes p if it has been read by both successors. That is, vk must have read p
before vi can remove it. A similar conflict could occur when vi extends a path
p in vj .list in Line 14 and vj wants to remove p in Line 5. This scenario is also
impossible to occur because vj can remove p only if it has already been read by
vi. We also show that if Algorithm 1 fails to find some prime path, then the list
of some vertex must have been empty initially, which is contrary to initializing
the list of every vertex with itself.

49

6 Experimental Results
This section presents the results of our experimental evaluations of the proposed
GPU-based method for PPs and TPs generation compared to the CPU-based
approach proposed in [8]. The experimental benchmark consists of a set of ten
modified CFGs from [3] (which are taken from Apache Commons libraries).
To increase the structural complexity of input CFGs, we synthetically include
extra nested loops and a variety of conditional statements to create more SCCs.
Our strategy for creating additional loops/SCCs is to include new arcs from the
‘then’ part of conditional statements back to their beginning. Table 2 presents the
structure of these CFGs. Columns 3 to 9 of Table 2 provide the number of nodes,
edges, and SCCs of each CFG. The total numbers of nodes and edges of all SCCs
are mentioned as SccNodes and SccEdges, respectively. Columns 7 and 8 show
the Cyclomatic Complexity (CC) [12] and Npath Complexity [13] of the input
CFGs. The last column illustrates the number of prime paths produced with
the GPU-based method. We compare the parallel and the sequential approaches
with respect to their running time and memory consumption. The number of
generated PPs for each CFG is provided in Column 9 of Table 2. We ran all the
experiments on an Intel Core i7 machine with 3.6GHz X 8 processors and 16 GB
of memory running Ubuntu 17.01 with gcc version 5.4.1. The parallel approach
is implemented on a Nvidia GTX graphical processing unit equipped with 4G
RAM and 768 CUDA cores.

Table 2. Modified benchmark CFGs and their structural complexity

C
F
G

Graph structure after modification

Original Functions

N
odes

E
dges

SC
C

SccN
odes

SccE
dges

CC Npath PPs

1 AsmClassReaderAccept 180 214 18 78 83 35 2.1e7 35629
2 AsmClassWriterToByteArray 215 258 24 103 110 44 6.1e11 176481
3 SquareMesh2DcreateLinks 244 290 27 115 125 49 3.3e12 139684
4 PrivilizerAsmMethodWriter 355 431 38 160 173 68 4.5e22 253954
5 SingularValueDecomposition 486 567 47 223 244 104 1.1e23 643738
6 ListParserTokenManager 723 853 75 331 351 131 2.0e32 1016762
7 BOBYQAOptimizer 874 994 83 409 762 155 9.3e39 1477397
8 ParserParserTokenManager 963 1119 93 448 490 213 1.3e44 2573594
9 InternalXsltcCompilerCUP 1441 1713 149 626 712 273 4.1e68 4478382
10 XPathLexerNextToken 2160 2566 224 957 1073 404 8.4e97 9563583

The bar graph of Figure 7 illustrates the time efficiencies of the CPU-based
and GPU-based approaches. (The reported timings for each approach is the
average of twenty runs.) These values reflect the fact that the time costs of the
CPU-based sequential method is less for smaller CFGs. Specifically, for the CFGs
of the top five rows of Table 2, on average, the CPU-based method consumed

50

1 2 3 4 5 6 7 8 9 10

0

0

1

1

·104

1
,1

5
5

2
,3

4
4

2
,6

6
5

2
,7

9
5

3
,4

5
6

3
,5

5
2

3
,6

4
9

3
,7

2
9

4
,0

9
4

4
,3

0
3

6
3 6
3
8

6
8
0

1
,2

5
7 3
,1

4
8

3
,8

6
6

4
,3

6
1

5
,6

2
7

1
1
,2

6
3

1
5
,1

6
5

Source Graphs

T
im

e
(s

)

Execution Time

GPU-Based

CPU-based

Fig. 7. Time cost of CPU-based vs. GPU-based method.

61% less time than the GPU-based method (due to the transfer overhead from
CPU to GPU). However, for large CFGs at the bottom of Table 2, the parallel
GPU-based method costs 39% less time than the sequential method. This time
efficiency increases significantly with growing graph size. For example, the GPU-
based time efficiency in the last graph is 71%. The recorded times indicate that
by increasing the structural complexity, the GPU-based algorithm provides a
better performance (assigning exactly one thread for each vertex). Thus, for real-
world applications that have a large number of lines and complex structures, the
GPU-based algorithm is expected to be highly efficient.

The bar graph of Fig.8 illustrates the space efficiency of the CPU-based vs.
the GPU-based approach. These values indicate that the GPU-based approach
applying TPAM method has less memory costs than the CPU-based method.
On average, the GPU-based approach consumes 62% less memory for the input
CFGs. On the other hand, for more complex CFGs, the CPU-based method
consumes a lot of memory due to the contiguous memory allocation.

7 Related Work

This section discusses related works on the prime and test paths coverage in
model-based software testing context. There are two major categories of TPs
generation/coverage. Static methods generate TPs of a given CFG. For exam-
ple, Amman and Offutt [1] start with the longest PP and extend every PP to
visit the start and end vertices, thus forming a TPs. Their process continues
with the remaining uncovered longest PPs. This algorithm does not attempt
to minimize the number of TPs but is extremely simple. Fazli and Afsharchi
[8] extract the set of SCC’s entry-exit paths that cover all internal PPs of all
SCCs. Then, they merge these paths using the complete paths of the component
graph, thereby yielding complete TPs that cover all incomplete PPs. Dynamic

51

methods instrument the PUT in order to analyze the coverage of a set of desired
paths. For example, nature-inspired methods (e.g., genetic algorithms [10] , ant
colony [15], swarm intelligence [4]) provide dynamic methods for PPs and TPs
coverage. TPGen, however, is a parallel self-stabilizing vertex-based algorithm
that significantly scales up the PPs and TPs generation in a static fashion for
structurally complex programs that are beyond the reach of existing methods.

1 2 3 4 5 6 7 8 9 10

0

2000

4000

6
.6

9

1
8
.2

2

2
1
.7

3

4
4
.1

9

8
2
.6

6

2
2
7
.2

1

3
1
8
.9

3
9
5
.1

7

7
5
4
.6

7 1
,5

9
9
.5

4

1
6
.6

9

4
6
.8

5

5
7
.3

8

1
2
3
.4

2

2
3
1
.1

3

5
1
1
.1

8

7
4
6
.8

3

9
0
6
.5

7

2
,0

2
9
.2

2

4
,5

5
8
.3

6

Source Graphs

M
em

o
ry

U
se

d
(M

B
)

Memory Consumption

GPU-Based

CPU-based

Fig. 8. Memory cost of CPU-based vs. GPU-based method.

8 Conclusions and Future Work

We presented a novel scalable GPU-based method, called TPGen, for the gener-
ation of all Test Paths (TPs) and Prime Paths (PPs) used in structural testing
and in test data generation. TPGen outperforms existing methods for PPs and
TPs generation in several orders of magnitude, both in time and space efficiency.
To reduce TPGen’s memory costs, we designed a non-contiguous and hierarchi-
cal memory allocation method, called Three-level Path Access Method (TPAM),
that enables efficient storage of maximal simple paths in memory. TPGen does
not use any synchronization primitives for the execution of the kernel threads
on GPU, and starting from any execution order of threads, TPGen generates
the PPs ending in any individual vertex; hence providing a fully asynchronous
self-stabilizing GPU-based algorithm.

As an extension of this work, we plan to further improve the scalability of
TPGen through execution on a network of GPUs. Moreover, we will integrate
PPs/TPs generation with constraint solvers towards generating test data for
specific TPs. We will expand the proposed benchmark with more structurally
complex programs. We also plan to develop tools that can calculate the structural
complexity of a given CFG for different complexity measures (e.g., CC, Npath,

52

PPs), and can compare two programs in terms of their structural complexity.
An important application of such tools will be in program refactoring towards
lowering structural complexity while preserving functional correctness.

References

1. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University
Press (2016)

2. Ammann, P., Offutt, J., Xu, W., Li, N.: Graph coverage web applications (2008)
3. Bang, L., Aydin, A., Bultan, T.: Automatically computing path complexity of pro-

grams. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 61–72. ACM (2015), http://www.cs.ucsb.edu/~vlab/PAC/

4. Bidgoli, A.M., Haghighi, H., Nasab, T.Z., Sabouri, H.: Using swarm intelligence
to generate test data for covering prime paths. In: International Conference on
Fundamentals of Software Engineering. pp. 132–147. Springer (2017)

5. Bueno, P.M.S., Jino, M.: Automatic test data generation for program paths using
genetic algorithms. International Journal of Software Engineering and Knowledge
Engineering 12(06), 691–709 (2002)

6. Dwarakanath, A., Jankiti, A.: Minimum number of test paths for prime path and
other structural coverage criteria. In: IFIP International Conference on Testing
Software and Systems. pp. 63–79. Springer (2014)

7. Eisenstat, S.C., Schultz, M.H., Sherman, A.H.: Algorithms and data structures for
sparse symmetric gaussian elimination. SIAM Journal on Scientific and Statistical
Computing 2(2), 225–237 (1981)

8. Fazli, E., Afsharchi, M.: A time and space-efficient compositional method for prime
and test paths generation. IEEE Access 7, 134399–134410 (2019)

9. Fazli, E., Ebnenasir, A.: TPGen: A self-stabilizing GPU-based method for prime
and test paths generation. arXiv preprint arXiv:2210.16998 (2022), https://
arxiv.org/abs/2210.16998

10. Hoseini, B., Jalili, S.: Automatic test path generation from sequence diagram using
genetic algorithm. In: Telecommunications (IST), 2014 7th International Sympo-
sium on. pp. 106–111. IEEE (2014)

11. Lin, J.C., Yeh, P.L.: Automatic test data generation for path testing using gas.
Information Sciences 131(1-4), 47–64 (2001)

12. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4), 308–320 (1976)

13. Nejmeh, B.A.: Npath: a measure of execution path complexity and its applications.
Communications of the ACM 31(2), 188–200 (1988)

14. Sayyari, F., Emadi, S.: Automated generation of software testing path based on
ant colony. In: Technology, Communication and Knowledge (ICTCK), 2015 Inter-
national Congress on. pp. 435–440. IEEE (2015)

15. Srivastava, P.R., Jose, N., Barade, S., Ghosh, D.: Optimized test sequence gener-
ation from usage models using ant colony optimization. International Journal of
Software Engineering &Applications 2(2), 14–28 (2010)

16. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM journal on com-
puting 1(2), 146–160 (1972)

53

An Optimised Complete Strategy for Testing
Symbolic Finite State Machines ⋆

Wen-ling Huang1[0000−0002−9915−5357], Niklas Krafczyk1[0000−0003−0475−4128],
and Jan Peleska1[0000−0003−3667−9775]

Department of Mathematics and Computer Science, University of Bremen, Bremen,
Germany {huang,niklas,peleska}@uni-bremen.de

Abstract. In this paper, we specialise a more general theory for test-
ing symbolic finite state machines (SFSM) to an important sub-class
of SFSMs. This specialisation allows for a significant reduction of test
cases needed for proving language equivalence between an SFSM refer-
ence model and an implementation whose true behaviour is captured by
another SFSM from a given fault domain.

Keywords: model-based testing; symbolic finite state machines; com-
plete test suites

1 Introduction

Background and Motivation In model-based (black-box) testing (MBT), test
cases to be executed against a system under test (SUT) are derived from refer-
ence models specifying the expected behaviour of the SUT, as far as visible at
its interfaces. MBT is often performed with the objective to show that the SUT
fulfils a conformance relation to the reference model, such as language equiva-
lence at the interface level. Alternatively, in property-oriented testing, MBT is
applied to check whether an SUT fulfils just a set of selected properties that are
fulfilled by the reference model [12].

In the context of safety-critical systems, so-called complete test suites are of
special interest. A suite is complete, if it (1) accepts every SUT fulfilling the
correctness criterion (soundness), and (2) rejects every SUT violating the cor-
rectness criterion (exhaustiveness). In black-box testing, completeness can only
be guaranteed under certain hypotheses about the kind of errors that can occur
in implementations. Therefore, the potential faulty behaviours are identified by
so-called fault domains: these are models representing both correct and faulty
behaviours, the latter to be uncovered by complete test suites. Without these
constraints, it is impossible to guarantee that finite test suites will uncover every
deviation of an implementation from a reference model: the existence of hidden
internal states leading to faulty behaviour after a trace that is longer than the
ones considered in a finite test suite cannot be checked in black-box testing. The
⋆ Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) – project number 407708394.

54

original work on complete test suites [3] was considered to be mainly of theo-
retical interest, but practically infeasible, due to the size of the test suites to be
performed in order to prove conformance. Since then however, it has been shown
that complete test suites can be generated with novel strategies leading to sig-
nificantly smaller numbers of test cases [5], and complete test suites for complex
systems can be generated with acceptable size, if equivalence class strategies are
used [9]. Moreover, the possibility to generate and execute large test suites in a
distributed manner on cloud server farms have pushed the limits of practically
tractable test suite sizes in a considerable way.

While the original theories on complete test suites have been elaborated for
finite states machines (FSM) with input and output alphabets (Mealy machines),
FSMs are less suitable for modelling reactive systems with complex, conceptually
infinite data structures. Therefore, complete strategies for MBT with different
modelling formalisms have been elaborated over the years, such as extended
finite state machines [11], timed automata [19], process algebras [13], variants of
Kripke structures [9], and symbolic finite state machines [12,15].

Symbolic finite state machines (SFSM) offer a good compromise between se-
mantic tractability and expressiveness: just like FSMs, they still operate on a
finite state space, but they allow for typed input and output variables. Transi-
tions are guarded by Boolean expressions (so-called symbolic inputs) over input
variables. In the more general case of SFSMs investigated in this paper, sym-
bolic outputs are Boolean first order expressions involving arithmetic expressions
over input and output variables, so that nondeterministic outputs are admissi-
ble. This makes SFSMs well-suited for modelling control systems with inputs
obtained from discrete or analogue sensors and outputs to likewise discrete or
analogue actuators. The control decisions depend on the guard valuations for the
given inputs and on a finite number of internal control states. Typical systems
of this kind are airbag controllers, speed monitors [10], or train protection units
for autonomous trains [4].

Objectives and Main Contributions In this paper, we present a complete
testing strategy for verifying language equivalence against a sub-class of SFSM
reference models. The SFSMs in this class may be nondeterministic with respect
to both transition guards and output expressions, but they are required to pos-
sess separable alphabets, as defined in Section 2. Intuitively speaking, their output
expressions are pairwise distinguishable for every guard condition by selecting a
specific input valuation for that the respective guard evaluates to true.

As fault domains, SFSMs of this class, with a bounded number of states,
arbitrary transfer faults (misdirected transitions), interchanged guards or output
expressions, and finitely many mutations of guards and outputs are accepted.

We consider the following results as the main contributions of this paper.
(1) A new complete language equivalence testing strategy is presented for SFSMs
with separable alphabets. The underlying mathematical theory is considerably
simpler than the general theory providing complete strategies for unrestricted
SFSMs. (2) In contrast to competing approaches [14–16,20], the SFSMs consid-

55

ered here may use nondeterministic transitions and output expressions. (3) It
is explained by means of a complexity argument and illustrated by an example
that the complete test suites for SFSMs with separable alphabets are signifi-
cantly shorter in general than those needed for SFSMs with arbitrary alphabets.
(4) An open source tool is provided that creates test suites according to the
strategy described in this paper and executes them against software SUTs.

Observe that we have chosen language equivalence as the desired conformance
relation and not reduction, where the implementation language is a subset of the
reference model’s language. In principle, since reduction preserves the safety
properties of the model, it would also be well-suited for testing safety-critical
control systems. In the worst case, however, complete test suites for reduction
testing require significantly more test cases than needed for equivalence test-
ing [18, Section 5.8.3]. Practically, language equivalence testing requires that
the reference model should be sufficiently detailed, so that the implementation
is expected to realise all behaviours the model is capable of.

Overview In Section 2, SFSMs are defined, and their basic semantic properties
are introduced. The restricted family of SFSMs that are covered by the testing
theory presented here is introduced. In Section 3, the generation of complete test
suites for this SFSM sub-class is described, and the lemmas and theorems for
proving the completeness property are presented. In Section 4, an open source
tool implementing the test generation method presented here is introduced. The
test suite generation is illustrated by means of an example in Section 5. Complex-
ity considerations regarding test suite size are presented in Section 6. Section 7
presents the conclusion.

The complete underlying theory covering general SFSMs, conformance test-
ing, and property-oriented testing, as well as the SFSM specialisations investi-
gated in this paper are available in the technical report [8]. This paper focuses
on the main contributions listed above, and it is self-contained, so that it can be
understood without studying the report. The latter is intended for readers inter-
ested in the “big picture” of the general theory and further results beyond those
presented here. Due to the usual space limitations, the full proofs of the lemmas
and theorems discussed in this paper are only contained in the report [8, Ap-
pendix A]. The report also discusses comprehensive related work [8, Section 14].
In this paper, we refer to selected related work where appropriate.

2 Symbolic Finite State Machines

Definition A Symbolic Finite State Machine (SFSM) is a tuple

S = (S, s0, R, I, O,D,ΣI , ΣO, Σ).

Finite set S denotes the state space, and s0 ∈ S is the initial state. Finite set I
contains input variable symbols, and finite set O output variable symbols. The
sets I and O must be disjoint. We use Var to abbreviate I ∪ O. We assume

56

that the variables are typed, and infinite domains like reals or unlimited integers
are admissible. Set D denotes the union over all variable type domains. The in-
put alphabet ΣI consists of finitely many guard conditions, each guard condition
being a predicate, that is, a Boolean quantifier-free first-order expression over
input variables. The finite output alphabet ΣO consists of output expressions;
these are predicates over (optional) input variables and at least one output vari-
able. We admit constants, function symbols, and arithmetic operators in these
expressions, but require that they can be solved based on some decision theory,
for example, by an SMT solver. The symbolic alphabet Σ ⊆ ΣI × ΣO consists
of all non-equivalent pairs of guards and output expressions used by the SFSM.
Set R ⊆ S ×Σ × S denotes the transition relation.

This definition of SFSMs is consistent with the definition of “symbolic in-
put/output finite state machines (SIOFSM)” introduced by Petrenko [14], but
slightly more general: SIOFSMs allow only assignments on output variables,
while our definition admits general quantifier-free first-order expressions. This is
useful for specifying nondeterministic outputs and for performing data abstrac-
tion.

s0 s1

s2

x = v/y ∈ [B0, B1]

x < v/y = 0

x
>
v/
y
=
B2

+
(x
− v

)/
c

x
<
v −

δ/
y
=
0

x
>
v/y

=
B
2 +

(x−
v)/c

x ≤ v/y = 0 x = v/y ∈ [B0, B1]

x ≥ v − δ/y = B2 + (x− v)/c

Constants. v = 200, δ = 10, B0 = 0.9, B1 = 1.1, B2 = 2, c = 100

Fig. 1. Braking system BRAKE.

Example 1. Consider the SFSM BRAKE that is graphically represented in Fig. 1.
It describes a (fictitious) braking assistance system to be deployed in modern
vehicles. Input variable x ∈ [0, 400] is the actual vehicle speed that should not
exceed v = 200[km/h]. As long as the speed limit is not violated, the system
remains in state s0 and does not interfere with the brakes: the brake force output1

1 This output y is a scalar value, to be multiplied with a constant to obtain the braking
force in physical unit Newton.

57

y ∈ R≥0 is set to 0. When the speed exceeds v, guard condition x > v evaluates
to true, and a transition s0 −→ s2 is performed. This transition sets the braking
force y to

y = B2 + (x− v)/c (1)

with constants B2 = 2 and c = 100. The resulting brake force y to be applied is
greater than 2, and it is increased linearly according to the extent that x exceeds
the allowed threshold v. For the maximal speed x = 400 that is physically
possible for this vehicle type, the maximal brake force y = 4 is applied. Note
that the output expressions do not represent assignments, but quantifier free
first-order expressions involving at least one output variable and optional input
variables.

While in state s2, the brake force is adapted according to the changing speed
by means of Formula (1). To avoid repeated alternation between releasing and
activating the brakes when the speed varies around v, the system remains in state
s2 while x ≥ v − δ with constant δ = 10. As a consequence, the braking force is
decreased down to B2 − 0.1 = 1.9 while the vehicle slows down to x = v− δ. As
soon as the speed is below v− δ, the braking system releases the brakes (y = 0)
and returns to state s0.

When BRAKE is in state s0 and the speed equals v, a nondeterministic system
reaction is admissible. Either the system stays in state s0 without any braking in-
tervention, or it transits to state s1 while applying a low brake force y ∈ [B0, B1]
with B0 = 0.9, B1 = 1.1 (we allow nondeterministic output expressions). This
nondeterminism could be due to an abstraction hiding implementation details.
While in state s1, this nondeterministic brake force in range [B0, B1] is applied,
until either the speed is increased above v (this triggers the same reaction as
in state s0), or the speed is decreased below v, which results in a transition
s1 −→ s0.

Computations, Valuation Functions, and Traces A symbolic finite com-
putation of S is a sequence ζ = (s0, (φ1, ψ1), s1).(s1, (φ2, ψ2), s2) · · · ∈ (S ×
Σ × S)∗, such that (si−1, (φi, ψi), si) ∈ R for all i > 0. Its projection ξ =
(φ1, ψ1).(φ2, ψ2) · · · ∈ Σ∗ is called a symbolic trace. The symbolic language Ls(S)
of an SFSM S is the set of all its symbolic traces.

A valuation function σ : X −→ D with X ∈ {I,O,Var} assigns values to
variable symbols. In case X = I, values are only defined for input variables, in
case X = O only for output symbols; for X = Var , all variables are mapped
to concrete values from their domain contained in D. Given any quantifier-free
formula φ over variable symbols from X, we write σ |= φ and say that σ is a
model for φ, if and only if the Boolean expression φ[v/σ(v) | v ∈ X] (this is the
formula φ with every symbol v ∈ X replaced by its valuation σ(v)) evaluates to
true.

We assume that each SFSM is completely specified. This means that in every
state, the union of all valuations that are models for at least one of the guards
applicable in this state equals the whole setDI of input valuations. Alternatively,

58

this can be expressed by the fact that the disjunction over all guards of a state
is always a tautology.

A concrete finite computation of S is a sequence ζc = (s0, σ1, s1)(s1, σ2, s2) . . .
with valuation functions σi defined on Var , such that there exists a symbolic
computation ζ traversing the same sequence of states and satisfying σi |= φi∧ψi
for all i > 0. The concrete computation ζc is called a witness of ζ, this is
abbreviated by ζc |= ζ. This is the synchronous interpretation of the SFSM’s
visible input/output behaviour, as discussed by van de Pol [17]: inputs and
outputs occur simultaneously, that is, in the same computation step σi.

The set of all valuations σ : X −→ D is denoted by DX . A (concrete) trace is
a sequence κ = σ1 . . . σn ∈

(
DVar

)∗ of valuation functions, such that there exists
a symbolic trace ξ = (φ1, ψ1) . . . (φn, ψn) ∈ Ls(S) with κ |= ξ, i.e., σi |= φi ∧ψi,
for all i = 1, . . . , n. The set of all traces of S is called its (concrete) language
and denoted by L(S). For any α = (φ1, ψ1) . . . (φk, ψk) ∈ (ΣI × ΣO)

∗, define
α|ΣI

= φ1 . . . φk. S is called reduced if its states are pairwise distinguishable by
concrete input traces leading to different outputs when applied to these states.
We can check this by trying to find a concrete trace κs = σ1 . . . σn ∈

(
DVar

)∗
for each state pair (s, s′) ∈ S with s ̸= s′, where κs is a model for some concrete
finite computation ζs = (s, σ1, s1) . . . (sn−1, σn, sn) starting in s, but where there
is no concrete finite computation ζs′ = (s′, σ1, s′1) . . . (s

′
n−1, σn, s

′
n) for s′. If such

a concrete trace κs exists for all distinct s, s′ ∈ S, the states in S are pairwise
distinguishable and S is reduced.

For the remainder of this paper, only well-formed SFSMs are considered.
This means that all guard conditions and associated output expressions can be
solved in the sense that every transition label (φ,ψ) ∈ Σ has at least one model
σ ∈ DVar satisfying σ |= φ ∧ ψ.

A Restricted Family of SFSMs – Separable Alphabets As indicated in
Section 1, we consider a slightly restricted class of SFSMs S in this paper that
allows for considerably smaller complete test suites for language equivalence
testing. All restrictions refer to the input alphabet ΣI , output alphabet ΣO,
and alphabet Σ ⊆ ΣI ×ΣO used by these SFSMs. The restrictions are specified
as follows, and we call any alphabet tuple (ΣI , ΣO, Σ) fulfilling them separable.

1. The alphabet Σ ⊆ ΣI×ΣO contains pairwise non-equivalent pairs of guards
and output expressions: for every two elements (φ,ψ) ̸= (φ′, ψ′) ∈ Σ, for-
mulae φ ∧ ψ and φ′ ∧ ψ′ have differing sets of models.

2. The symbolic input alphabet ΣI partitions the set DI of input valuations,
that is, for all σ ∈ DI , there exists a uniquely determined φ ∈ ΣI such that
σ |= φ.

3. Separability of output expressions. For any (φ,ψ) ∈ Σ, there exists at least
one input valuation σI ∈ DI distinguishing (φ,ψ) from all other (φ,ψ′) ∈ Σ

59

with ψ′ ̸= ψ ∈ ΣO, in the sense that σI fulfils

(∃σO ∈ DO � σI ∪ σO |= φ ∧ ψ) ∧ (2)
(
∀ψ′ ∈ ΣO \ {ψ} � (φ,ψ′) ∈ Σ =⇒

(∀σ′
O ∈ DO � (σI ∪ σ′

O |= ψ) =⇒ (σI ∪ σ′
O |= ¬ψ′))

)

Restriction 1 is only syntactic: if (φ,ψ) ̸= (φ′, ψ′) ∈ Σ differ syntactically,
but are equivalent first order expressions, one of these pairs, say (φ′, ψ′), is re-
moved from Σ. SFSM transitions (s1, φ′, ψ′, s2) ∈ R are replaced by (s1, φ, ψ, s2)
without changing the language of the SFSM.

Likewise, Restriction 2 is only syntactic: by refining guard conditions, a new
syntactic representation of the original SFSM is obtained that has the same
language. The detailed refinement mechanism is described in [8], a simple case
is shown below in Section 5.

Only Restriction 3 reduces the semantic domain of SFSMs that can be tested
according to the strategy described here. Intuitively speaking, Formula (2) re-
quires for each pair of guard φ and output expression ψ the existence of an
input valuation σI ∈ DI such that a suitable output valuation σO ∈ DO satis-
fying σI ∪ σO |= φ ∧ ψ exists, and every possible output σ′

O that can occur for
output expression ψ and the given inputs σI could not have been produced by
any other output expression ψ′ ̸= ψ. In the example presented in Section 5, it is
illustrated how the syntactic Requirements 1,2 can be established by a refining
transformation, and how the third restriction is checked.

The airbag controllers, speed monitors, and train protection units mentioned
in Section 1 can all be modelled as SFSMs with separable alphabets. A simple
class of alphabet tuples that are not separable are those where the output ex-
pressions define nondeterministic, overlapping data ranges that do not depend
on input values at all, such as, for example,

(ΣI , ΣO, Σ) = ({x < 0, x ≥ 0}, {y ∈ [0, 2], y ∈ [1, 3]}, ΣI ×ΣO).

Here, the more general testing theory described in [8] needs to be applied.
The following lemma states the important property that separability of al-

phabets is preserved when an SFSM only uses a subset of the output expressions
occurring in a separable alphabet.

Lemma 1. Let (ΣI , ΣO, Σ) be a separable alphabet. Then any alphabet (ΣI , Σ′
O, Σ

′)
satisfying Σ′

O ⊆ ΣO, Σ′ ⊆ ΣI ×Σ′
O and Σ′ ⊆ Σ is also separable.

Complete Testing Assumptions As is usual in black-box testing of nonde-
terministic systems, we adopt the complete testing assumption [7]. This requires
the existence of some known k ∈ N such that, if an input sequence (i.e. a test
case) is applied k times to the SUT, then all possible responses are observed,
and, therefore, all states reachable by means of this sequence have been visited.

60

Since we are dealing with possibly infinite input and output domains, “all pos-
sible responses” is interpreted in the way that all satisfiable symbolic traces of
the system under test are visited when executing a test case k times.

In “real-world” test campaigns for safety-critical systems, code coverage and/or
hardware address coverage measurements are performed during software tests
and HW/SW integration tests, so that it can be determined whether all reac-
tions to a given test case have been observed after its k-fold execution.

Finite State Machine Abstraction Recall that a finite state machine (FSM,
Mealy Machine) is a tuple M = (S, s0, R,ΣI , ΣO, Σ) with finite state space S,
initial state s0 ∈ S, finite input and output alphabets ΣI , ΣO, transition relation
R ⊆ S ×Σ × S.

Given a SFSM S = (S, s0, R, I, O,D,ΣI , ΣO, Σ), simply deciding to leave
guard conditions and output expressions uninterpreted yields an FSM M =
(S, s0, R,ΣI , ΣO, Σ). The language L(M) of FSM M is the set of all traces α =
(φ1, ψ1) . . . (φk, ψk) ∈ Σ∗, such that there exists a sequence of states s0.s1 . . . sk
satisfying ∀i ∈ {1, . . . , k} � (si−1, φi, ψi, si) ∈ R.

Since M uses the SFSM’s transition relation and symbolic alphabets, and
since the language of M is defined exactly as the symbolic language of S, this
abstraction of SFSM S to FSM M preserves the symbolic language, that is,
L(M) = Ls(S).

Fault Domains In the context of this paper, a fault domain is an SFSM-set
F(ΣI , ΣO, Σ,m), that is defined for any separable alphabet (ΣI , ΣO, Σ). All
SFSMs S ′ ∈ F(ΣI , ΣO, Σ,m) have the following properties. (1) The alphabet
(ΣI , Σ

′
O, Σ

′) of S ′ satisfies Σ′
O ⊆ ΣO and Σ′ ⊆ Σ. (2) When represented in

observable, reduced form2, S ′ has at most m states. Moreover, (3) The reference
model S is also contained in F(ΣI , ΣO, Σ,m) and has n ≤ m states, when
represented in observable, reduced form.

Following the concept of mutation testing, a fault domain admits finitely
many mutants of guard conditions and mutants of output expressions, these
are contained in ΣI and ΣO, respectively. Since, as explained above, the input
alphabet of any SFSM can always be transformed for a set of refined guard
conditions without changing the language, it can always be assumed that all
SFSMs in the fault domain operate on the same input alphabet. This is usually
more fine-grained than the original alphabet used by the reference model, in order
to accommodate for erroneous guard conditions. Erroneous implementations may
use faulty combinations of guards φ and output expressions ψ, but these faulty
combinations (φ,ψ) must be captured in Σ. Faulty SFSMs may possess up to
m− n additional states, and they may exhibit arbitrary transfer faults, that is,

2 An SFSM is observable if every concrete trace leads to a uniquely determined tar-
get state. Every non-observable SFSM can be transformed into an observable one
without changing its language [8]. An observable SFSM is reduced if its states are
pairwise distinguishable.

61

misdirected transitions. The fault domain construction principle is illustrated in
the example discussed in Section 5.

3 Test suite generation

Throughout this section, SFSM S plays the role of a reference model, and S ′ is
the representation of the true SUT behaviour as an SFSM. S ′ is supposed to be
contained in the fault domain.

Symbolic and Concrete Test Cases, Test Suites A symbolic test case is
a sequence of (guard condition/output expression) pairs, that is, any sequence
α ∈ Σ∗. A concrete test case is a sequence τ of pairs of (input/output) valuation,
that is τ ∈ (DVar)∗.

Note that in other contexts, test cases represent just sequences of inputs [3].
In this paper, a test case is a sequence of symbolic or concrete input/response
pairs, because this facilitates the investigation of language equivalence. Observe
further, that it is not required for a test case to be in the language of the reference
model: a test case can also contain responses to inputs that are erroneous from
the reference model’s perspective.

A symbolic input test case is a finite sequence of guard conditions ξI ∈ Σ∗
I .

For concrete test executions, of course, only the input projections of concrete test
cases are passed to the SUT, we denote these sequences as concrete input test
cases. Given a concrete input test case τI = σ1

I . . . σ
p
I ∈ (DI)∗ and a sequence of

output valuations τO = σ1
O . . . σ

p
O ∈ (DO)∗ of the same length as τI , we use the

abbreviated notation τI/τO = (σ1
I ∪ σ1

O) . . . (σ
p
I ∪ σpO) ∈ (DVar)∗.

Let outk(S ′, τI) denote the collection of output responses of S ′ to the concrete
input test case τI obtained during k executions of this test case. Note that
outk(S ′, τI) is a random collection: for repeated execution of k test case runs
each, outk(S ′, τI) may contain different output traces in the nondeterministic
case.

A symbolic test suite TS ⊆ Σ∗ is a set of symbolic test cases, a concrete test
suite TS ⊆ (DVar)∗ is a set of concrete test cases.

Pass Relations

Definition 1 (Pass relation for symbolic test cases). Let α ⊆ Σ∗ be a
symbolic test case. We say S ′ passes α (with respect to reference model S) if and
only if

α ∈ Ls(S ′) ⇐⇒ α ∈ Ls(S).

Definition 2 (Pass relation for concrete input test cases). Let τI ∈ (DI)∗

be a concrete input test case. We say S ′ passes τI if and only if

1. for any τO ∈ outk(S ′, τI), it holds that τI/τO ∈ L(S), and
2. for any α ∈ Ls(S) with τI/τO |= α, there exists τ ′O ∈ outk(S ′, τI) satisfying

τI/τ
′
O |= α.

62

Condition 1 of this pass relation requires that all concrete outputs τO observ-
able in k executions of input test case τI conform to S in the sense that τI/τO
is contained in the language of S.

Language equivalence testing A symbolic test suite is called complete, if
passing this suite is equivalent to proving equality of the symbolic languages of
reference model and implementation.

Definition 3 (Complete test suites). Let TS ⊆ Σ∗ be a symbolic test suite.
TS is called complete for proving the equivalence of Ls(S) and Ls(S ′) if and only
if Ls(S) ∩ TS = Ls(S ′) ∩ TS ⇐⇒ Ls(S) = Ls(S ′).

In the sense of Definition 1, this means that S ′ passes all test cases from TS

with respect to reference model S, because

Ls(S) ∩ TS = Ls(S ′) ∩ TS ≡ ∀α ∈ TS �
(
α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′)

)

A symbolic input test suite TSI ⊆ Σ∗
I is called complete for proving the equiv-

alence of Ls(S) and Ls(S ′) if and only if the symbolic test suite TS = {α ∈
Σ∗ | α|ΣI

∈ TSI} is complete for proving the equivalence of Ls(S) and Ls(S ′).

Definition 4 (Distinguishing Function). A distinguishing function T : Σ∗ →
(DI)∗ is a function from sequences of the symbolic alphabet to sequences of in-
put valuations, such that for any α ∈ Σ∗, |T (α)| = |α|, and T (α)(i) ∈ dis(α(i)),
∀i = 1, . . . , |α|, where dis(φ,ψ′) = {σI ∈ DI | σI satisfies Formula (2)}.

A function T : Σ → DI is called a distinguishing function associated with
Σ, if its natural extension T : Σ∗ → (DI)∗ defined by T ((φ1, ψ1) . . . (φk, ψk)) =
T (φ1, ψ1) . . . T (φk, ψk) is a distinguishing function.

A given distinguishing function T can be reduced to a function depending on
symbolic input sequences only by defining T (αI) = {T (α) | α ∈ Σ∗∧α|ΣI

= αI}.
For the remainder of this paper, T always denotes a distinguishing function.

The following lemma states that any sequence of input valuations obtained by a
distinguishing function already determines the associated sequence of symbolic
alphabet elements in a unique way.

Lemma 2. Suppose α, β ∈ Σ∗, τI = T (α) ∈ (DI)∗ and τO ∈ (DO)∗, such that
τI/τO |= α holds. Then τI/τO |= β implies α = β.

Lemma 3. Let α ∈ Σ∗ be a symbolic test case. Suppose S ′ passes concrete input
test case T (α). Then S ′ passes symbolic test α, i.e., α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′).

The following theorem shows that for the restricted class of SFSMs considered
in this paper, concrete language equivalence already implies symbolic language
equivalence.

Theorem 1. Ls(S) = Ls(S ′) ⇐⇒ L(S) = L(S ′).

Theorem 2. Let TS ⊆ Σ∗ be a complete test suite for proving the equivalence of
Ls(S) and Ls(S ′). Then T (TS) is a complete concrete input test suite for proving
the equivalence of L(S) and L(S ′).

63

We can now state the main theorem about complete test suites for SFSMs
with separable alphabets: complete symbolic input test suites can be directly
transformed into likewise complete concrete input test suites, using the distin-
guishing function.

Theorem 3. Let TSI ⊆ Σ∗
I be a complete symbolic input test suite for prov-

ing the equivalence of symbolic languages Ls(S) and Ls(S ′). Then T (TSI) is a
complete concrete input test suite for proving the equivalence of L(S) and L(S ′).

For generating a complete test suite for testing language equivalence against
some SFSM reference model S, we can abstract S to an FSM M and use an arbi-
trary complete test generation method for testing language equivalence against
M . A complete FSM test suite TSFSM consists of test cases that are input se-
quences α over the alphabet ΣI . Each sequence α can be turned into a concrete
SFSM input test case by applying a distinguishing function T : Σ −→ DI

associated with S. The resulting test suite generation method is specified in
Algorithm 2 below. Algorithm 1 specifies how to calculate the distinguishing
function T for a given SFSM S.

Algorithm 1 Calculate Distinguishing Function T for alphabet (ΣI , ΣO, Σ).
T ← ∅;
for all (φ,ψ) ∈ ΣI ×ΣO do

find solution σI ∈ DI for Formula (2) using an SMT solver supporting quantified
satisfaction [2]:
(∃σO ∈ DO � σI ∪ σO |= φ ∧ ψ) ∧

(
∀ψ′ ∈ ΣO \ {ψ} � (φ,ψ′) ∈ Σ =⇒

(∀σ′
O ∈ DO � (σI ∪ σ′

O |= ψ) =⇒ (σI ∪ σ′
O |= ¬ψ′))

)

if solution σI exists then
T ← T ∪ {(φ,ψ) 7→ σI};

else
terminate with error “Alphabet does not fulfil separability condition” ;

end if
end for
return T .

4 Tool Support

Essential for creating a complete concrete input test suite is the calculation
of the distinguishing function T : Σ −→ DI according to Definition 4. This
can be performed using Algorithm 1. The crucial step in this algorithm is the
calculation of a valuation function σI satisfying Formula (2) for given (φ,ψ) ∈ Σ.
To solve this formula, an SMT solver supporting quantified satisfaction (QS) is
required [2]. Several tools are available for this purpose, we have integrated Z33

into our test generator for this purpose.
3 https://github.com/Z3Prover/z3

64

Algorithm 2 Generate test suite for proving language equivalence against SFSM
S = (S, s0, R, I,O,D,ΣI , Σ

′
O, Σ

′) and fault domain F(ΣI , ΣO, Σ,m)
.
Require: (ΣI , ΣO, Σ) is separable, Σ′

O ⊆ ΣO, Σ′ ⊆ Σ;
Calculate distinguishing function T : Σ −→ DI using Algorithm 1;
if calculation of T returns an error then

return error message “Test suite cannot be generated, since alphabet does not
fulfil separability condition”

end if
Define FSM M = (S, s0, R,ΣI , Σ

′
O, Σ

′) abstracting S as described in Section 2;
Calculate complete input test suite TSFSM ⊆ Σ∗

I for checking FSM language equiva-
lence against M and fault domain FFSM(ΣI , ΣO,m);
return T (TSFSM).

The complete test suite generation is specified in Algorithm 2. As shown in
Theorem 4, this algorithm yields a complete test suite for the SFSM reference
model S, when applying the distinguishing function T to a complete test suite
from the FSM obtained by abstracting S. For calculating a complete test suite
for a given reference FSM and fault domain F(ΣI , ΣO, Σ,m)FSM the tool makes
use of the library libfsmtest [1] that contains many of the well-established test
generation algorithms for testing against FSM models.

Theorem 4. Algorithm 2 generates a test suite TS that is complete for proving
language equivalence against reference model S = (S, s0, R, I,O,D,ΣI , ΣO, Σ)
and fault domain F(ΣI , ΣO, Σ,m).

Note that a value of m can be obtained by static analysis of the SUT state
variables occurring in the source code. The potential mutations of guards and
output expressions can be obtained by identifying the condition expressions and
the right-hand sides of assignments, respectively. These techniques have been
manually applied by Gleirscher et al. [6], but automated static analysers for
these purposes are not yet available.

A demonstration instance of the tool with a web interface exists at
http://fsmtestcloud.informatik.uni-bremen.de.

5 Application of the Test Method: Example

In this section, we use the SFSM BRAKE introduced in Example 1 to illustrate the
transformations needed to incorporate the fault hypotheses and to obtain the
required syntactic representation that is necessary to apply the testing method
presented in Section 3. Then a test suite is produced according to the algorithms
described in Section 4.

Step 1 – define input and output alphabet mutations. Initially, the pos-
sible mutations of the reference model’s alphabet that may occur in erroneous
implementations are identified. To keep this example readable, we only add one

65

guard mutation x ≤ v − δ to the set of guards actually used by SFSM BRAKE.
Additionally, one mutated output expression y = B2 + (x− v)2/c is added.

Step 2 – input alphabet refinement. Next, the input alphabet including
guard mutations is refined to ensure that Restriction 2 (input alphabet partitions
DI) is fulfilled. The original input alphabet of BRAKE extended by the above
guard mutation does not fulfil this condition. Therefore, a refined alphabet ΣI =
{φ1, φ2, φ3, φ4, φ5} with

φ1 ≡ x ∈ [0, v − δ) φ2 ≡ x = v − δ φ3 ≡ x ∈ (v − δ, v)
φ4 ≡ x = v φ5 ≡ x ∈ (v, 400]

(3)

is introduced, and SFSM BRAKE is transformed accordingly. This leads to the
new representation BRAKE′ that is shown in tabular form in Table 1. Obviously,
BRAKE′ and BRAKE are language-equivalent. Moreover, it is easy to see that the
states s0, s1, s2 of BRAKE′ are still distinguishable, so n = 3 for the reference
model BRAKE′ of this example.

Table 1. Refined SFSM BRAKE′ fulfilling assumptions 1 — 3 specified in Section 2.

Left column lists source states, starting with initial state. First row lists guard condi-
tions from ΣI . Inner table cells cij list ‘next state/output expression’, applicable when
guard condition φj is triggered in source state si. Guards φi are specified in Equa-
tion (3), and output expressions ψj are defined in Equation (4).

φ1 φ2 φ3 φ4 φ5

s0 s0/ψ1 s0/ψ1 s0/ψ1 s0/ψ1 s2/ψ3

s1/ψ2

s1 s0/ψ1 s0/ψ1 s0/ψ1 s1/ψ2 s2/ψ3

s2 s0/ψ1 s2/ψ3 s2/ψ3 s2/ψ3 s2/ψ3

Step 3 – specify the fault domain. For the fault domain F(ΣI , ΣO, Σ,m),
the input alphabet ΣI is already defined by Equation (3). For specifying ΣO,
the output alphabet of BRAKE is extended by the output mutation identified in
Step 1. This results in ΣO = {ψ1, ψ2, ψ3, ψ4} with

ψ1 ≡ y = 0, ψ2 ≡ y ∈ [B0, B1], ψ3 ≡ y = B2+(x−v)/c, ψ4 ≡ y = B2+(x−v)2/c
(4)

for our example. Since φ4 ∧ψ4 is equivalent to φ4 ∧ψ3, the alphabet is specified
by Σ = (ΣI ×ΣO) \ {(φ4, ψ4)} to ensure separability.

As an estimate for the maximal number m ≥ n of states for SFSM behaviours
captured by F(ΣI , ΣO, Σ,m), we choose m = 4 for this example.

Step 4 – calculate distinguishing function T . The distinguishing function
T : Σ −→ DI is calculated according to Algorithm 1 in Section 4. For our
example, T results in the function specified in Table 2.

66

It is easy to see that the separability condition for output expressions is
fulfilled. Observe that for BRAKE′, the distinguishing function T does not depend
on the second argument ψ ∈ ΣO. In the general case, the image value of T
depends on both guard condition and output expression.

Table 2. Function table T : Σ −→ DI for transformed SFSM BRAKE′.

Guards φi are specified in Equation (3), output expressions ψj in Equation (4).

T (φ1, ψi) ={x 7→ 180}, T (φ2, ψi) = {x 7→ 190}, T (φ3, ψi) = {x 7→ 195}, i = 1, 2, 3, 4

T (φ4, ψi) ={x 7→ 200}, i = 1, 2, 3, T (φ5, ψi) = {x 7→ 210}, i = 1, 2, 3, 4

Step 5 – calculate complete test suite on FSM abstraction. We now
abstract BRAKE′ to an FSM as described in Section 2 with F(ΣI , ΣO, Σ,m)FSM
as fault domain. To generate a complete test suite for FSM language equiva-
lence testing, we apply the well-known W-method [3] for this example, since this
method is simple to introduce and to apply without tool support. From Theo-
rem 3 follows that any complete input test suite W for the FSM abstraction will
directly yield a complete input test suite for the SFSM BRAKE′ by applying the
distinguishing function T to W.

For fault domain F(ΣI , ΣO, Σ,m)FSM, a complete input test suite according
to the W-method is given by the set of input sequences

W = V.
(m−n+1⋃

i=0

Σi
I

)
.W,

where V is a state cover consisting of input traces leading from the initial state to
every state in the reference model, Σi

I is the set of all input traces of length i (Σ0
I

just contains the empty trace ε), and W is a characterisation set, distinguishing
all states of the reference model. The “ .”-operator concatenates all traces in the
first operand with all traces in the second operand. For our example,m−n+1 = 2
and

V = {ε, φ4, φ5}, W = {φ4},
2⋃

i=0

Σi
I = {ε, φj , φj .φk | j, k ∈ {1, 2, 3, 4, 5}}.

Applying T to this FSM test suite results in the SFSM input test suite

TSin = A.B.C, A = {ε, T (φ4, ·), T (φ5, ·)}
B = {ε, T (φj , ·), T (φj , ·).T (φk, ·) | j, k ∈ {1, 2, 3, 4, 5}}, C = {T (φ4, ·)}

Consider, for example, a faulty implementation IBRAKE, that differs from
BRAKE′ by a transfer fault: the correct BRAKE-transition s2

φ2/ψ3−−−−→ s2 has been

67

replaced by the faulty transition s2
φ2/ψ3−−−−→ s1. This faulty transition is detected

by the input test case tc1 = {x 7→ 210}.{x 7→ 190}.{x 7→ 200} ∈ A.B.C:
execution of this test case against IBRAKE will result in witnesses for symbolic
trace ξ1 = (φ5, ψ3).(φ2, ψ3).(φ4, ψ2). The reference model BRAKE′, however, will
produce only a witness for symbolic trace ξ′1 = (φ5, ψ3).(φ2, ψ3).(φ4, ψ3), and
φ4∧ψ3 has y = B2 as the only solution, while φ4∧ψ2 has solutions y ∈ [B0, B1].

6 Complexity Considerations

After discarding input traces that are prefixes of longer ones, the test suite
specified in the previous section results in 65 test cases. Using the general the-
ory for testing language equivalence of arbitrary SFSMs would result in 176
test cases [8]. The reason for this significant difference can be understood from
the general theory [8]: every complete test suite has to contain a “core set”
V.(

⋃m−n+1
i=0 Ai) of test cases that are suitable for (a) reaching every state s in

the SUT, and (b) exercising the relevant inputs from a set A ⊆ DI in every state
s. In the general case, the number of elements in A depends on the number of
input/output equivalence classes, each class constructed by conjunctions of pos-
itive and negated guards and output expressions. For our example, this leads to
8 concrete representatives of these input/output classes. The specialised theory
presented in this paper, however, only needs one representative for every guard
in ΣI , after having previously ensured that ΣI partitions DI . This leads to 5
representatives only. For worst case estimates, the input set A has a cardinality
of order O(2(|ΣI |+|ΣO|)) in the general theory, whereas the cardinality of A is of
order O(2|ΣI |) in the specialised cases presented here, due to the separability of
alphabets.

7 Conclusion

We have presented a testing strategy for checking input/output language equiva-
lence against a restricted class of nondeterministic symbolic finite state machines
and proven its completeness. The restricted class of admissible SFSM models is
characterised by separable alphabets. This means that output expressions are
pairwise distinguishable for each transition guard, by choosing appropriate in-
put valuations fulfilling the respective guard conditions. If a reference model
conforms to this restriction, the resulting test suites proving language equiva-
lence are significantly smaller than those needed for the general case, for which
a complete theory exists as well.

It should be emphasised that for grey-box software testing, the check whether
an implementation is really contained in a given fault domain can be performed
by means of static analysis of the source code. Applying these analyses, the
complete tests described here represent an alternative to code verification by
model checking.

68

References

1. Bergenthal, M., Krafczyk, N., Peleska, J., Sachtleben, R.: libfsmtest an open source
library for fsm-based testing. In: Clark, D., Menendez, H., Cavalli, A.R. (eds.)
Testing Software and Systems. pp. 3–19. Springer International Publishing, Cham
(2022)

2. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A.,
McIver, A., Sutcliffe, G., Voronkov, A. (eds.) 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations,
LPAR 2015, Suva, Fiji, November 24-28, 2015. EPiC Series in Computing, vol. 35,
pp. 15–27. EasyChair (2015). https://doi.org/10.29007/vv21

3. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4(3), 178–186 (Mar 1978)

4. Eder, K.I., Huang, W., Peleska, J.: Complete agent-driven model-based sys-
tem testing for autonomous systems. In: Farrell, M., Luckcuck, M. (eds.) Pro-
ceedings Third Workshop on Formal Methods for Autonomous Systems, FMAS
2021, Virtual, 21st-22nd of October 2021. EPTCS, vol. 348, pp. 54–72 (2021).
https://doi.org/10.4204/EPTCS.348.4

5. Endo, A.T., da Silva Simão, A.: Experimental comparison of test case generation
methods for finite state machines. In: Antoniol, G., Bertolino, A., Labiche, Y.
(eds.) Fifth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012. pp. 549–558.
IEEE Computer Society (2012). https://doi.org/10.1109/ICST.2012.140

6. Gleirscher, M., Peleska, J.: Complete test of synthesised safety supervisors for
robots and autonomous systems. In: Farrell, M., Luckcuck, M. (eds.) Proceed-
ings Third Workshop on Formal Methods for Autonomous Systems, FMAS
2021, Virtual, 21st-22nd of October 2021. EPTCS, vol. 348, pp. 101–109 (2021).
https://doi.org/10.4204/EPTCS.348.7

7. Hierons, R.M.: Testing from a nondeterministic finite state machine using
adaptive state counting. IEEE Trans. Computers 53(10), 1330–1342 (2004).
https://doi.org/10.1109/TC.2004.85

8. Huang, W., Krafczyk, N., Peleska, J.: Model-Based Conformance Testing and Prop-
erty Testing With Symbolic Finite State Machines - Technical Report. Tech. rep.,
Zenodo (Nov 2022). https://doi.org/10.5281/zenodo.7267975

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing for non-
deterministic systems. Formal Aspects of Computing 29(2), 335–364 (2017).
https://doi.org/10.1007/s00165-016-0402-2

10. Hübner, F., Huang, W., Peleska, J.: Experimental evaluation of a novel equivalence
class partition testing strategy. Software & Systems Modeling 18(1), 423–443 (Feb
2019). https://doi.org/10.1007/s10270-017-0595-8, published online 2017

11. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine (efsm). In: ICST. pp. 230–239. IEEE
Computer Society (2009)

12. Krafczyk, N., Peleska, J.: Exhaustive property oriented model-based testing with
symbolic finite state machines. In: Calinescu, R., Pasareanu, C.S. (eds.) Software
Engineering and Formal Methods - 19th International Conference, SEFM 2021,
Virtual Event, December 6-10, 2021, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 13085, pp. 84–102. Springer (2021). https://doi.org/10.1007/978-3-030-
92124-8_5

69

13. Peleska, J., Huang, W., Cavalcanti, A.: Finite complete suites for csp re-
finement testing. Science of Computer Programming 179, 1 – 23 (2019).
https://doi.org/https://doi.org/10.1016/j.scico.2019.04.004

14. Petrenko, A.: Checking Experiments for Symbolic Input/Output Finite State
Machines. In: 2016 IEEE Ninth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW). pp. 229–237 (Apr 2016).
https://doi.org/10.1109/ICSTW.2016.9

15. Petrenko, A.: Toward testing from finite state machines with sym-
bolic inputs and outputs. Softw. Syst. Model. 18(2), 825–835 (2019).
https://doi.org/10.1007/s10270-017-0613-x

16. Petrenko, A., da Silva Simão, A.: Checking experiments for finite state machines
with symbolic inputs. In: El-Fakih, K., Barlas, G.D., Yevtushenko, N. (eds.) Test-
ing Software and Systems - 27th IFIP WG 6.1 International Conference, ICTSS
2015, Sharjah and Dubai, United Arab Emirates, November 23-25, 2015, Proceed-
ings. Lecture Notes in Computer Science, vol. 9447, pp. 3–18. Springer (2015).
https://doi.org/10.1007/978-3-319-25945-1_1

17. van de Pol, J., Meijer, J.: Synchronous or alternating? - LTL black-box checking of
mealy machines by combining the learnlib and ltsmin. In: Margaria, T., Graf, S.,
Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why
Not? - Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 11200, pp. 417–430. Springer, Heidelberg,
Germany (2018). https://doi.org/10.1007/978-3-030-22348-9_24

18. Sachtleben, R., Peleska, J.: Effective grey-box testing with partial FSM models.
Softw. Test. Verification Reliab. 32(2) (2022). https://doi.org/10.1002/stvr.1806

19. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata. Theo-
retical Computer Science 254(1-2), 225–257 (March 2001)

20. Timo, O.N., Petrenko, A., Ramesh, S.: Fault model-driven testing from
FSM with symbolic inputs. Softw. Qual. J. 27(2), 501–527 (2019).
https://doi.org/10.1007/s11219-019-9440-3

70

Afra: An Eclipse-Based Tool with Extensible
Architecture for Modeling and Model Checking

of Rebeca Family Models

Ehsan Khamespanah1,2, Marjan Sirjani2,3, and Ramtin Khosravi1

1 School of Electrical and Computer Engineering, University of Tehran - Iran
2 School of Computer Science, Reykjavik University - Iceland

3 School of Innovation, Design, and Engineering, Mälardalen University - Sweden

Abstract. Afra is an Eclipse-based tool for the modeling and model
checking of Rebeca family models. Together with the standard enriched
editor, easy to trace counter-example viewer, modular temporal property
definition, exporting a model and its transition system to some other for-
mats facilities are features of Afra. Rebeca family provides actor-based
modeling languages which are designed to bridge the gap between for-
mal methods and software engineering. Faithfulness to the system being
modeled, and the usability of Rebeca family languages help in ease of
modeling and analysis of the model, together with the synthesis of the
system based on the model. In this paper, architectural decisions and de-
sign strategies we made in the development of Afra are presented. This
makes Afra an extensible and reusable application for the modeling and
analysis of Rebeca family models. Here, we show how different compil-
ers can be developed for the family of languages which are the same in
general language constructs but have some minor differences. Then we
show how the model checking engine for these different languages is de-
signed. Despite the fact that Afra has a layered object-oriented design
and is developed in Java technology, we use C++ codes for developing
its model checking for the performance purposes. This decision made the
design of the application even harder.

Keywords: Actors, Rebeca, Afra, Model Checking, Eclipse

1 Introduction

The actor model is a well-known model for the development of highly available
and high-performance applications. It benefits from the universal primitives of
concurrent computation [1], called actors, which are distributed, autonomous
objects that interact by asynchronous message passing. Each actor provides a
number of services, and other actors send messages to it to run the services.
Messages are put in the mailbox of the receiver, the receiver takes a message
from the mailbox and executes its corresponding service. Hewitt introduced the
actor model as an agent-based language [2] and is later developed by Agha as a
mathematical model of concurrent computation [1].

71

Rebeca is an operational interpretation of the actor model with formal seman-
tics. Rebeca is designed to bridge the gap between formal methods and software
engineering. The formal semantics of Rebeca is a solid basis for its formal verifi-
cation [3]. Compositional and modular verification, abstraction, symmetry and
partial-order reduction have been investigated for verifying Rebeca models [4].
The theory underlying these verification methods is already established and is
embodied in verification tools [5, 6]. Different extensions have been provided for
modeling and analyzing of different aspects of actor systems. Timed Rebeca is
an extension on Rebeca with time features for modeling and verification of time-
critical systems [7]. Probabilistic Rebeca is another extension of Rebeca which is
developed to consider the probabilistic behavior of actor systems [8]. Probabilis-
tic Timed Rebeca (PTRebeca) is an extension of Rebeca which benefits from
modeling features of Timed Rebeca and Probabilistic Rebeca, combining the
syntax of both languages [9]. More details about these extensions are provided
in Section 2. RebecaSys is another extension of Rebeca which is developed to
support hardware/software co-design (i.e. system-level design) [10]. In Broad-
casting Rebeca [11] and Wireless Rebeca [12] the Core Rebeca is extended from
a different dimension to provide broadcasting and multi-casting among actors
which is crucial for modeling and verification of network protocols.

Afra is a toolset which is developed for the purpose of providing modeling and
analysis facilities for the Rebeca family languages. As the same as many other
Eclipse plugins, Afra contains a set of Eclipse views and editors together with a
set of Java components for implementing models and analyzing them. In addi-
tion to the syntax-highlighting editor, Afra provides easy to use counterexample
browser which made debugging of models easier. The focus of these futures is in
improving the usability of the developed toolset. Beside the essence of providing
usability, there is a need for considering extensibility and maintainability of the
model checking toolset. This need becomes more important for the case of Afra
as it has to support a set of modeling languages which require different compilers
and model checking algorithms.

In this paper, we show how Afra is designed to make it extensible and main-
tainable for different languages of the Rebeca family. Starting from the archi-
tectural view (Section 3) we make clear how the main functional requirements
of Afra are placed in a set of Java components. Then, we describe the tech-
niques which are used for the implementation of compilers of the Rebeca family
languages from syntax and semantics points of view (Section 4). To this end,
we discussed techniques which can be used to develop the hierarchy of com-
pilers using ANTLR [13] toolset. Then, we introduce the class diagram of the
semantics-checker which we developed for performing semantical analysis of the
Rebeca family models and make it clear that how it can be extended to consider
the future extension on Rebeca.

To increase the performance of model checking, Afra transforms models into a
set of C++ source codes. Running these codes results in generating the transition
system of the model and performs property checking. This approach is very
similar to the development approach of SPIN [14]. Decisions which are made in

72

the design of C++ classes and how third-party template generators help in code
reuse are issues which we address in Sections 5 and 5.2.

2 Rebeca Family Modeling Languages

A Rebeca model is similar to the actor model as reactive objects without shared
variables are its only computation units. Objects in Rebeca are reactive, self-
contained, and each of them is called a rebec (reactive object). Note that in this
paper we use rebec and actor interchangeably. Each actor has an unbounded
buffer, called message queue, for its arriving messages. Communication among
actors takes place by asynchronous message passing with no blocking send and
no explicit receive. Computation is event-driven, meaning that each actor takes a
message that can be considered as an event from the top of its message queue and
executes the corresponding message server (also called a method). In Rebeca,
the execution of a message server is atomic, i.e. there is no way to preempt the
execution of a message server of an actor and start executing another message
server of that actor. Note that we call the basic extension of Rebeca as Core
Rebeca to avoid misunderstanding.

2.1 Core Rebeca

A Core Rebeca model consists of a set of reactive classes definitions and the main
block. In the main block, actors which are instances of the reactive classes are de-
clared. The body of the reactive class includes the declaration of its known actors,
state variables, and message servers. Message servers consist of the declaration of
local variables and the body of the message server. The statements in the body
can be assignments, conditional statements, enumerated loops, non-deterministic
assignment, and method calls. Method calls are sending asynchronous messages
to other actors (or to itself). A reactive class has an argument of type integer
denoting the maximum size of its message queue. Although message queues are
unbounded in the semantics of Rebeca, to ensure that the state space is finite,
we need a user-specified upper bound for the queue size. The operational se-
mantics of Rebeca has been introduced in [15] in more detail. In comparison
with the standard actor model, dynamic creation and dynamic topology are not
supported by Core Rebeca. Also, actors in Core Rebeca are single-threaded.

We illustrate the Core Rebeca language with an example. Listing 1.1 shows
the Core Rebeca model of the ticket service system. The model consists of three
reactive classes: TicketService, Agent, and Customer. In this model, Customer
sends the requestTicket message to Agent (line 32) and Agent forwards the
message to TicketService (line 18). TicketService replies to Agent by sending
a ticketIssued message (line 8) and Agent responds to Customer by sending
the issued ticket (21). Upon receiving a ticket, Customer tries for another ticket
(line 37).

73

Listing 1.1. The Rebeca model of Ticket
Service System

1 reactiveclass TicketService (3) {

2 knownrebecs {Agent a;}

3 statevars {int nextId;}

4 TicketService() {

5 nextId = 0;

6 }

7 msgsrv requestTicket() {

8 a.ticketIssued(nextId);

9 nextId = nextId + 1;

10 }

11 }

12 reactiveclass Agent (3) {

13 knownrebecs {

14 TicketService ts;

15 Customer c;

16 }

17 msgsrv requestTicket() {

18 ts.requestTicket();

19 }

20 msgsrv ticketIssued(byte id) {

21 c.ticketIssued(id);

22 }

23 }

24 reactiveclass Customer (2) {

25 knownrebecs {Agent a;}

26 statevars {boolean sent;}

27 Customer() {

28 self.try();

29 sent = false;

30 }

31 msgsrv try() {

32 a.requestTicket();

33 sent = true;

34 }

35 msgsrv ticketIssued(byte id) {

36 sent = false;

37 self.try();

38 }

39 }

40 main {

41 Agent a(ts, c):();

42 TicketService ts(a):(3);

43 Customer c(a):();

44 }

For a given Core Rebeca model, a modeler can specify the correctness proper-
ties of the model as a set of assertions or LTL formula. As shown in Listing 1.2,
a property specification has three parts. In the first part the atomic proposi-
tions of the properties are defined. An atomic proposition is defined by its name
and a boolean expression as its value. cIsSent and idCounter are two atomic
propositions in Listing 1.2.

Listing 1.2. Correctness property specification of Ticket Service System

1 property {

2 define {

3 cIsSent = c.sent;

4 idCounter = ts.nextId;

5 }

6 Assertion {

7 MaxNumberOfTickets: idCounter < 10;

8 }

9 LTL {

10 NoStarvation: G(cIsSent -> F(!cIsSent));

11 }

12 }

The assertions of models are defined in the second part of property specifica-
tions. An assertion is defined by its name and a boolean expression as its value,
which its terms are the labels of atomic propositions. MaxNumberOfTickets is
the only assertion of this model which makes sure that the number of issued
tickets in this model is less than 10. Note that this model does not satisfy
MaxNumberOfTickets as there is no limitation on the number of issued tick-

74

ets. The last part of the property specification contains LTL formula. An LTL
formula is defined by its name and combination of logical expressions and LTL
modalities as its value, which its terms are the labels of atomic propositions.
G(ϕ), f(ϕ), and U(ϕ, ψ) are used to specify 2ϕ (always), 3ϕ (eventually), and
ϕUψ (until) respectively. NoStarvation is the only LTL property of this model
which makes sure that each request for ticket will be served in the future.

2.2 Timed Rebeca

Timed Rebeca is an extension on Rebeca with time features for modeling and
verification of time-critical systems [7]. To this end, three primitives are added to
Rebeca to address computation time, message delivery time, message expiration,
and period of occurrence of events. In a Timed Rebeca model, each actor has its
own local clock and the local clocks evolve uniformly. Methods are still executed
atomically, however passing time while executing a method can be modeled. In
addition, instead of a queue for messages, there is a bag of messages for each
actor.

In comparison to the syntax of Rebeca, three timing primitives are defined
in Timed Rebeca which are delay, deadline and after. The delay statement
models the passing of time for an actor during the execution of a message server.
The keywords after and deadline can only be used in conjunction with a
method call. The value of the argument of after shows how long it takes for
the message to be delivered to its receiver. The deadline shows the timeout
for the message, i.e., how long it will stay valid. We illustrate the application
of these keywords using the Timed Rebeca version of the ticket service system
in Listing 1.3. Note that this source code only contains the parts of the model
which are different in the Rebeca and Timed Rebeca models. As shown in line 3
of the model, issuing a ticket takes two or three time units (modeled by a non-
deterministic expression). At line 10 the actor instantiated from Agent sends
a message requestTicket to actor ts instantiated from TicketService, and
gives a deadline of five to the receiver to take this message and start serving
it. The periodic task of retrying for a new ticket is modeled in line 15 by the
customer sending a try message to itself and letting the receiver to take it from
its bag only after 30 units of time (by stating after(30)).

Listing 1.3. The Timed Rebeca model of
ticket service system

1 reactiveclass TicketService {

2 msgsrv requestTicket() {

3 delay(?(2, 3));

4 a.ticketIssued(nextId);

5 nextId = nextId + 1;

6 }

7 }

8 reactiveclass Agent {

9 msgsrv requestTicket() {

10 ts.requestTicket()

deadline(5);

11 }

12 }

13 reactiveclass Customer {

14 msgsrv ticketIssued(byte id) {

15 self.try() after(30);

16 }

17 }

For a given Timed Rebeca model, a modeler can specify the correctness
properties of the model as a set of assertions or TCTL formula. The structure

75

of property specifications for Timed Rebeca models is the same as the property
specification of Core Rebeca models except that there is TCTL part instead of
LTL part. In TCTL specifications AU(time <= c, ϕ, ψ), EU(time <= c, ϕ, ψ),
AF (time <= c, ϕ), AG(time <= c, ϕ) are used to specify ∀ϕU≤c ψ, ∃ϕU≤c ψ,
∀3≤c ϕ, ∀2≤c ϕ respectively. The same formula can be used to express modalities
with ≥ c time constraint.

2.3 Probabilistic and Probabilistic Timed Rebeca

Probabilistic Rebeca is an extension of Rebeca for modeling actor-based systems
with probabilistic and nondeterministic behavior [8]. In order to provide a con-
cise syntax for Probabilistic Rebeca, different possibilities of probabilistic aspects
that could exist in an actor based system are investigated and two keywords to-
gether with one expression definition are added to Rebeca. The first keyword is
pAlt which models probabilistic alternative behavior in the switch-case style.
In a pAlt structure, each block of statements may be executed by its associated
probabilities. The second keyword is probloss which can only be used in con-
junction with a method call. The value of the argument of probloss shows the
probability of losing this message in the communication among actors. They only
new expression definition of Probabilistic Rebeca is the probabilistic expression
which its definition is like nondeterministic expressions such that a real number
is associated with each choice of it. We illustrate the application of these features
using the Probabilistic Rebeca version of the ticket service system in Listing 1.4.
As shown in line 3, there is a probability of 0.01 percent for adding the ticket
number by two instead of one. Also, line ?? shows that the issued ticket may not
send to the customer by the probability of 0.1. Finally, a customer may decide
to not to ask for a new ticket with the probability of 0.5 as shown in line 10.

Listing 1.4. The Probabilistic Rebeca
model of Ticket Service System

1 reactiveclass TicketService {

2 msgsrv requestTicket() {

3 delay(?(0.4:2, 0.6:3));

4 a.ticketIssued(nextId);

5 nextId = nextId + 1;

6 }

7 }

8 reactiveclass Customer (2) {

9 msgsrv try() {

10 pAlt{

11 0.5: a.requestTicket();

12 0.5: self.try();

13 }

14 }

15 }

Probabilistic Timed Rebeca (PTRebeca) is an extension of Rebeca which
benefits from modeling features of Timed Rebeca and Probabilistic Rebeca, com-
bining the syntax of both languages [9]. This aims at enhancing modeling abil-
ities in order to cover performance evaluation of probabilistic real-time actors.
Although there is no new feature in the syntax of PTRebeca a new semantics
is defined for it to support timing, probabilistic, and nondeterministic features
[16]. PTRebeca is the first actor-based language which supports time, proba-
bility, and nondeterminism in modeling distributed systems with asynchronous
message passing.

76

3 Afra Architecture

Afra is the modeling and analysis IDE of the Rebeca family models4. It is de-
veloped as an Eclipse plugin and released as a standalone Eclipse product. It
contains a set of Eclipse views and editors together with three Java components
for implementing models and analyzing them. As shown in Figure 1, the Afra
plugin contains compiler component for compiling its given models, RMC com-
ponent for generating model checking codes for models, and model transformer
component to transform the Rebeca family models to some other well-known
models and programs.

Platform	Runtime

Workspace

Workbench

JFace

SWT

Help

Team

Model
Transformer

Compiler

RMC

Afra Plugin
Eclipse	Platform

State	
Space

Transformer

Fig. 1. Components and connectors view of Afra

Using Afra, the compiler component makes sure that a given model is syn-
tactically and semantically correct. At the second step, the transition system of
the given model has to be generated and it has to be analyzed against given
correctness properties. To this aim, the given model is transformed to a set of
C++ source. Running the generated C++ codes provides the model checking
result by generating the transition system of the model. The summary of the
user activities to this end is shown in the Activity Diagram of Figure 2.

The first release of the Afra benefits from the model checking engine which
was developed in 2006 for Core Rebeca models [17], called Modere. Modere has
an object-oriented design and the next model checking engines for the other
members of the Rebeca family are developed by extending Modere classes.
The overview of the design of model checking classes of Afra is presented in
Figure 3. We will provide more details about the classes of this diagram in
Sections 5 and 5.2. As illustrated in Figure 3, AbstractModelChecker and
AbstractActor are two core classes of this design. For the case of Core Re-
beca, there is AbstractCore
RebecaAnalyzer class which deals with actors of models, produces states based
on the behavior of actors, and stores them in the state spaces storage (i.e.

4 Afra can be downloaded from http://rebeca-lang.org/alltools/Afra.

77

User	presses	model	
checking	button

Model	is	
compiled

Report	
errors

Generate	
C++	files

Compile	and	
run	C++	files

Report	model	
checking	result

Report	counter	
example

[Check	if	there	is
compile	errors]

[Yes]

[Yes]

[No]

[No]

[Check	if	the	result	
is	property	
violation]

Fig. 2. The main activities of a user with Afra for the model checking of a model

CoreRebecaDFSHashmap in the figure). As the model checker of Core Rebeca
has to consider actor classes and model checking algorithm, it is inherited from
both of AbstractModelChecker and AbstractCoreRebecaAnalyzer. The fig-
ure illustrates that AbstractCoreRebecaAnalyzer is also used for simulating
Core Rebeca models5. The detailed description of this part of the diagram is
provided in Section 5. The same condition is valid for the case of Timed Re-
beca models. For the case of PTRebeca, inheritance takes place from the classes
of Timed Rebeca classes as both the model checking and actors behaviors are
developed based on the timed model checker. The detailed description of this
part is provided in Section 5.2. The extensible hierarchy of Figure 3 illustrates it
can be easily extended to combine/modify actor behaviors and model checking
algorithms to support future members of the Rebeca family.

AbstractCore
RebecaAnalyzer

Abstract
ModelChecker

CoreRebeca
DFSHashmap

AbstractActor

CoreRebeca
ReactiveClass

TimedRebeca
ReactiveClass

AbstractTimed
RebecaAnalyzer

TimedRebeca
ModelChecker

TimedRebeca
Hashmap

CoreRebeca
ModelChecker

CoreRebeca
TraceGenerator

Common
Classes

Core	Rebeca
Classes

PTRebeca
ModelChecker

Timed	Rebeca
Classes

PTRebeca
Classes

PTRebeca
ReactiveClass

Fig. 3. The UML class diagram of model checkers in Afra

5 This feature is excluded from the current release of Afra.

78

4 Compiling Rebeca Family Models

Prior to dealing with the complexities of model checking engines of the Re-
beca family members, we provide a short overview on how we developed an
extensible compiler for them. Rebeca compiler component provides an interface
which checks both syntax and semantics of given models and their corresponding
property specifications, then publishes their Abstract Syntax Tree (AST) using
predefined Java objects. It uses ANTLR toolset to parse the Rebeca family
model and report syntax errors of the models. To improve the extensibility of
the design compiler, we developed two grammar specifications for Core Rebeca:
1) expressions of Rebeca which also includes method calls and sending messages
and 2) Rebeca constructs. Then, using the inheritance mechanism of ANTLR
for parser specifications, we developed parser specifications of the other Rebeca
family extensions. For example, there is a rule for specifying primary terms of
expressions which can be an identifier or message sending:

primary : IDENTIFIER (LPAREN expressionList RPAREN)?

To develop the grammar specification of Timed Rebeca, we explicitly specified
that the new grammar is an extension of the Core Rebeca grammar. Then, we
overwrite the primary rule with the following, as a sending message may be
followed by after or deadline specifiers in Timed Rebeca:

primary : IDENTIFIER (LPAREN expressionList RPAREN)? (AFTER LPAREN

expression RPAREN)? (DEADLINE LPAREN expression RPAREN)?)?

For the case of Probabilistic Rebeca, both of the parser specifications are ex-
tended to add probabilistic expressions in the expression parser and pAlt in the
language constructs. The compiler of Probabilistic Timed Rebeca is developed
by inheriting from the parsers of both Timed Rebeca and Probabilistic Rebeca
and no modification in parsing rules is needed. Compilers of property specifica-
tions are developed using the same approach for Core Rebeca and Timed Rebeca
models.

The same as the compilers, for the semantic check of the models, we need to
consider extensibility and future Rebeca extensions. To this end, we used pico-
container design pattern to manage semantic checker rules of each extension of
the language. In addition, two sets of semantics checker are designed for the
compiler of the Rebeca family models which check statements and expressions
of models, As shown in Figure ??. Implementing the check method in new sub-
classes of AbstractStatementSemanticsCheck or AbstractExpressionSemanticsCheck,
different semantics checkers for the Rebeca family constructs are Developed.
Then, based on the Rebeca extension, a subset of these semantics checkers are
put in the statements and expressions containers. Note that as Rebeca state-
ments can be nested (e.g. nested loops of conditional statements) each semantic
checker delegates semantics checking of its internal statements into the appropri-
ate semantics checker object, which is accessible from the containers. In addition,
for considering dynamic scoping of Rebeca variables ScopeHandler class in de-
fined which keeps track of activation records, shown in Figure ??.

79

AbstractSemanticCheck
- compilerFeatures
- symbolTable

+	getters	/	setters

AbstractSemanticCheck
Container

- compilerFeatures
- symbolTable

+	getters	/	setters

AbstractStatementSemantic
Check

+	check(statement)

SwitchStatementSemantic
Check

+	check(statement)

ForStatementSemantic
Check

+	check(statement)

ContinueStatementSemant
icCheck

+	check(statement)

ReturnStatementSemantic
Check

+	check(statement)

ConditionalStatement
SemanticCheck

+	check(statement)

ScopeHandler

- scopeStack

+	pushScopeRecord
+	popScopeRecord
+	addVaribaleToCurrentScope
+	retreiveVariableFromScope

AbstractExpressionSemantic
Check

+	check(expression,	baseType)

UnaryExpressionSemanticChec
k

+	check(expression,	baseType)

NondetExpressionSemanticCh
eck

+	check(expression,	baseType)

LiteralExpressionSemanticChe
ck

+	check(expression,	baseType)

DotExpressionSemanticCheck

+	check(expression,	baseType)

BinaryExpressionSemantic
Check

+	check(expression,	baseType)

StatementSemantic
CheckContainer

+	check(expression)
+	check(statement)

ExpressionSemantic
CheckContainer

+	check	(expression)

1

Fig. 4. The UML class diagram of the semantics checker of the Rebeca family

5 Model Checking of Rebeca Family Models

5.1 Model Checking of Core Rebeca

As mentioned before, the correctness properties of Core Rebeca models can be
specified by assertions and LTL formulas. In Modere, the model and the negation
of the correctness property are generated as two Büchi automata. The model
satisfies the correctness property if and only if the synchronous product of these
two automata does not accept any word. Otherwise, the accepted word has to
be reported as the counterexample of the model. Modere uses Nested Depth
First Search (NDFS) algorithm for computing the product automata on-the-fly.
This way, only one DFS is used to generate the product automaton and find
the accepting states. To avoid stack overflow, Modere uses the non-recursive
implementation of the NDFS and handles the search stack manually. Note that
Modere only considers the fair sequences of execution. An infinite sequence is
considered (weakly) fair when all the actors of the model are infinitely often
executed or disabled. For generating the Büchi automata of the negations of
property specifications we used LTL transformer of Java PathFinder (JPF) [18].

Based on the design strategies that we introduced in Section 3, in Modere,
reactive classes are transformed into C++ classes and actors are instantiated
from them, shown in Figure 5. Each class that corresponds to a reactive class
has a local hash table (its name if localHashtable in Figure 5) for storing its
local states and the index of each local state in the hashtable is assumed as its
id. Note that as one hashtable is enough for storing states of all of the instances

80

AbsractActor
- myId
- myName
#	messageQueue
#	knownRebecs
#	allRebecs

#	enqueue()
+	execute()
+	exportStateInXML()	
+	exportQueueContentInXML()
+	exportStateVariablesInXML()
+	exportAMessageInXML()
+	marshalActorToArray()
+	unmarshalActorFromArray()
+	marshalActor()
+	unmarshalActor()
+	storeLocalState()

ReactiveClass_1_Actor
#	localHashTable
- state_variable_1
- state_variable_n
+	execute()
+	exportStateVariablesInXML()
+	exportAMessageInXML()
+	marshalActorToArray()
+	unmarshalActorFromArray()
+	messageServer_1()
#	messageServer_1_Imp()
+	messageServer_n()
#	messageServer_n_Imp()

ReactiveClass_2_Actor
#	localHashTable
- state_variable_1
- state_variable_n
+	execute()
+	exportStateVariablesInXML()
+	exportAMessageInXML()
+	marshalActorToArray()
+	unmarshalActorFromArray()
+	messageServer_1()
#	messageServer_1_Imp()
+	messageServer_n()
#	messageServer_n_Imp()

ReactiveClass_n_Actor
#	localHashmap
- state_variable_1
- state_variable_n
+	execute()
+	exportStateVariablesInXML()
+	exportAMessageInXML()
+	marshalActorToArray()
+	unmarshalActorFromArray()
+	messageServer_1()
#	messageServer_1_Imp()
+	messageServer_n()
#	messageServer_n_Imp()

AbsractTimedActor

#	now
#	messageQueueTimeBundle

+	exportStateInXML()	
+	exportQueueContentInXML()
#	timeEnqueue()
#	applyPolicy()
+	marshalActor()
+	unmarshalActor()
+	storeLocalState()

ReactiveClass_1_TimedActor

#	localHashTable
#	localHashTableTimeBundles

ReactiveClass_2_TimedActor

#	localHashTable
#	localHashTableTimeBundles

ReactiveClass_n_TimedActor

#	localHashTable
#	localHashmapTimeBundles

Fig. 5. The UML class diagram of actors classes in Modere

of a reactive class, it is defined as a static field. The global state of the model
is the composition of the local states of all of the actors of the model and it is
stored in another hashtable as one state of the transition system of the model.
Dividing state of the system into inter-process and intra-process hashtables is
similar to the method used in SPIN, causes up to 60% reduction in the memory
usage for storing transition systems [17]. State exploration in Modere takes place
by calling the execute method of all the enabled actors from each state. Actors
in Modere have an execute method that picks a message from the head of its
message queue and execute a method which corresponds to that message. As
calling execute results in delegating the execution to one of the methods of the
actor classes, its implementation is different for each actor class; so, it is defined
as an abstract method in AbstractActor and is overwritten in its inherited
classes.

As shown in Figures 5, AbstractActor provides methods marshalActor and
unmarshalActor for putting/restoring the state of an actor into/from its local
hashtable, including the values of state variables and the queue content. But,
as different actors have a different set of state variables, the implementation of
these two methods are actor dependent. To break this dependency, we defined
two abstract helper methods in AbstractActor, i.e. marshalActorToArray and
unmarshalActorFromArray, which put/restore the state of an actor into/from a
byte array. The actor classes implement these two methods based on their state
variables and queues configuration. So, marshalActor and unmarshalActor

methods consider dealing with the local hashtable and use the helper methods
to deal with the actor state variables and queues contents. As we will discuss
later, this strategy made the implementation of actor classes which correspond
to Timed and Probabilistic Rebeca easier. The same strategy is followed in im-
plementing methods which correspond to exporting the state of actors in XML.

81

1										1
storage

AbsractCoreRebecaAnalyzer

#	now
#	messageQueueTimeBundle

+	exportState()	
+	exportTransition()	
+	marshalActors()
+	unmarshalActors()
+	storeRecentlyCreatedState()
+	instantiationPart()
+	checkAtomicProposition_1()
+	checkAtomicProposition_n()

CoreRebecaModelChecker

+	doModelChecking()
+	doDFSModelChecking()
+	exportModelCheckingResult()
+	getNextClaimState()
+	isAcceptingState()

CoreRebecaDFSHashmap

- hashmap

+	exists()
+	put()

AbsractActor 1			rebecs			n

AbstractModelChecker
#	numberOfStates
#	numberOfTransitions

+	doModelChecking()
+	exportModelCheckingDetails()

CoreRebecaTraceGenerator

- numberOfTraces

+	generateTraces()
- generateOneTrace()

Fig. 6. The UML class diagram of Modere

As shown in Figure 5, exportStateInXML and exportQueueContentInXMLmeth-
ods are implemented in AbstractActor; but, exportStateVariablesInXML and
exportAMessageInXML are defined as abstract methods and are implemented in
the actor classes to consider state variables and message structure of actors.

To implement the provided services of reactive classes, two types of methods
are defined in ReactiveClass x Actor classes, as shown in Figure 5 (note that
x in the name of classes are replaced with the name of reactive classes which
are defined in the given model). The public methods are called by the other
actors and put a message in the queue of actors. The protected methods (which
have Imp suffix) are called by the execute method of the actors to perform the
expected behavior of executing message server.

Using these classes, the model checker of Core Rebeca can be implemented
using the classes of Figure 6. The common behavior of model checking and sim-
ulation are put in AbsractCoreRebecaAnalyzer. This class is able to handle
instantiation of actors (as described in the main part), marshal or unmarshal
the global state of the system, export the global state of the system in XML,
and check atomic propositions in a global state. CoreRebecaModelChecker uses
these methods to implement the model checking algorithm. The NDFS algo-
rithm of Modere is implemented in doDFSModelChecking and two methods
getNextClaimState and isAcceptingState are used to traverse the property
Büchi automata and check its accepting states respectively.

As mentioned in [17], Modere has been used for the model checking of mod-
els from networking, distributed systems, an some other models from different
domains and handles state spaces of up to 10 million states. Also, two reduc-
tion techniques have been implemented for it which made it applicable for the
analysis of more complicated models.

82

5.2 Model Checking of Timed and PTRebeca Models

As depicted in Figure 3, the structure of the Timed Rebeca model checking
classes is the same that of in Core Rebeca. Two major semantics have been pro-
posed considered for Timed Rebeca: coarse-grained semantics which is a natural
event-based semantics for actors, and fine-grained semantics which is a standard
state-based semantics [19]. Using the coarse-grained semantics, in each state, the
local time of each actor can be different from the others, i.e., the execution of
actors is not synchronized over their local times. The state space which is gen-
erated using this semantics is called Floating Time Transition System (FTTS).
In contrast, using the fine-grained semantics, the local time of all actors is the
same. Note that when we talk about synchronized local clocks we are explain-
ing the concept of time in the model, while fine-grained semantics respects this
synchrony, in the coarse-grained we relax the time synchronization constraint.
Comparing to the fine-grained semantics, using FTTS can be considered as a
reduced state transition system where the event-based properties are preserved.

In addition to differences in the semantics, the mechanism of detecting re-
peated states in Core Rebeca and Timed Rebeca are different. In Core Rebeca,
two states are the same if the valuation of state variables of all actors are the
same, together with the content of their message queues. In Timed Rebeca this
condition is needed but progress in time does not allow states to be the same
as it goes to infinity. It because of the fact that there is no explicit time reset
operator in Timed Rebeca. However, reactive systems which generally show pe-
riodic or recurrent behaviors are modeled using Timed Rebeca. In other words,
they perform periodic behaviors over infinite time. Based on this fact, in [20]
we proposed a new notion for equivalence relation between two states to make
the transition systems finite, called shift equivalence relation. Intuitively, in shift
equivalence relation two states are equivalent if and only if they are the same
except for the parts related to the time and shifting the times of those parts
in one state makes it the same as the other one. To make detecting the shift
equivalence relation possible, we divided the content of states into two parts
in Timed Rebeca. The first part contains values of state variables and untimed
part of the message bag. This part is stored in the local hashtable of actors
the same as what we described for Core Rebeca actors. A list of time-bundles
is associated with the states of the local hashtable of actors which stores the
second part, i.e. the local time of the actor and timed specifier of messages of its
message bag. This way, a newly generated state is repeated if it corresponds to
an existing item in the local hashtable and shifting the values of its time-bundle
make it equal to one of the existing time-bundles associated to that item. These
changes require inheriting AbstractTimedActor from AbstractActor to deco-
rate methods which are responsible for marshaling, unmarshaling, and storing
the state of timed actors. In addition, methods which export the state of the
timed actors have to be overwritten to put timing specification of actors and its
received messages in exported data. As mentioned in [16], behaviors of actors
and generating the state space of PTRebeca is very similar to that of in Timed

83

Rebeca. So, PTRebecaReactiveClass and PTRebecaModelChecker are directly
inherited from their corresponding classes in Timed Rebeca.

Combining the mentioned techniques, Timed Rebeca and PTRebeca is used
in modeling, model checking, and performance evaluation of NoC designs, WSAN
applications, network protocols, and transportation planning, which results in
state spaces of up to 10 million states.

6 Conclusion and Future Work

In this paper, we addressed the problem of designing an extensible toolset for
modeling and model checking of a family of languages. We showed that how
Rebeca family models are defined and how an extensible compiler can be devel-
oped for the existing and future extensions of it, in Afra. Using the proposed
approach, developing syntax and semantics checkers of the future extension of
Rebeca only requires rewriting the compiler specification rules of the modified
parts and their semantics checker observers. At the second step, we proposed
an extensible design for developing the model checkers of a subset of Rebeca
family extensions. Separating actors behavior from the state space generation
mechanism, we illustrated that how a new model checker can be developed for
a new extension of Rebeca.

We have used the proposed approaches for developing model checkers for
Core Rebeca, Timed Rebeca, and Probabilistic Timed Rebeca and integrate
them in Afra as an Eclipse-based standalone toolset. Afra provides an enriched
editor, easy to trace counter-example viewer, and exports models and their tran-
sition systems to some other formats. As a future work, we planned to integrate
compilers and model checkers of more members of Rebeca family in Afra to ben-
efit from the mentioned facilities. We also want to enrich transformation from
models and state spaces to other formalism to allow modelers to use them for
analyzing their actor models.

Acknowledgments

The work on this paper has been supported in part by the project “Self-Adaptive
Actors: SEADA” (nr. 163205-051) of the Icelandic Research Fund.

References

1. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed
Systems. MIT Press series in artificial intelligence. MIT Press (1990)

2. Hewitt, C.: Description and Theoretical Analysis (Using Schemata) of PLANNER:
A Language for Proving Theorems and Manipulating Models in a Robot. MIT
Artificial Intelligence Technical Report 258, Department of Computer Science, MIT
(April 1972)

3. Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience.
In: Formal Modeling: Actors, Open Systems, Biological Systems. (2011) 20–56

84

4. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Khamespanah, E., Movaghar, A.:
Symmetry and partial order reduction techniques in model checking rebeca. Acta
Inf. 47(1) (2010) 33–66

5. Sabouri, H., Sirjani, M.: Slicing-based reductions for rebeca. Electr. Notes Theor.
Comput. Sci. 260 (2010) 209–224

6. Sirjani, M., de Boer, F.S., Movaghar-Rahimabadi, A.: Modular Verification of a
Component-Based Actor Language. J. UCS 11(10) (2005) 1695–1717

7. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and Simulation of Asynchronous Real-Time Systems
Using Timed Rebeca. Sci. Comput. Program. 89 (2014) 41–68

8. Varshosaz, M., Khosravi, R.: Modeling and verification of probabilistic actor sys-
tems using prebeca. In Aoki, T., Taguchi, K., eds.: Formal Methods and Soft-
ware Engineering - 14th International Conference on Formal Engineering Methods,
ICFEM 2012, Kyoto, Japan, November 12-16, 2012. Proceedings. Volume 7635 of
Lecture Notes in Computer Science., Springer (2012) 135–150

9. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H.: Performance analysis of
distributed and asynchronous systems using probabilistic timed actors. ECEASST
70 (2014)

10. Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.: Sys-
fier: Actor-based formal verification of systemc. ACM Trans. Embedded Comput.
Syst. 10(2) (2010) 19:1–19:35

11. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of
broadcasting actors. In Dastani, M., Sirjani, M., eds.: Fundamentals of Software
Engineering - 6th International Conference, FSEN 2015 Tehran, Iran, April 22-
24, 2015, Revised Selected Papers. Volume 9392 of Lecture Notes in Computer
Science., Springer (2015) 69–83

12. Yousefi, B., Ghassemi, F., Khosravi, R.: Modeling and efficient verification of
wireless ad hoc networks. CoRR abs/1604.07179 (2016)

13. Parr, T.J., Quong, R.W.: Antlr: A predicated-LL(k) parser generator. Software-
Practice And Experience. 25(7) (1995) 789–810

14. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5)
(1997) 279–295

15. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and Verification of
Reactive Systems using Rebeca. Fundam. Inform. 63(4) (2004) 385–410

16. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini, M.: Ptrebeca:
Modeling and analysis of distributed and asynchronous systems. Sci. Comput.
Program. 128 (2016) 22–50

17. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine of
rebeca. In Haddad, H., ed.: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC), Dijon, France, April 23-27, 2006, ACM (2006) 1810–1815

18. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2) (2003) 203–232

19. Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.: Floating time
transition system: More efficient analysis of timed actors. In: Formal Aspects of
Component Software - 12th International Conference, FACS 2015, Niterói, Brazil,
October 14-16, 2015. Volume 9539 of LNCS., Springer (2015) 237–255

20. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98 (2015) 184–204

85

A Graphical User Interface of Afra

An overview of Afra user interface is depicted in Figure 7. Afra user inter-
face consists five main sections which are, projects browser, model and prop-
erty editor, model-checking result view, and counter example and its details
views. The demo of how to work with the toolset is available from the address
http://rebeca-lang.org/assets/tools/Afra/Afra-3.0-Demo.mov.

Counter	
Example	
Viewer

Counter	
Example	
Details

Analysis	
Result

Model	Editor

Project	
Explorer

Fig. 7. Afra graphical user interface

86

Interaction-based Offline Runtime Verification of
Distributed Systems⋆

Erwan Mahe1 , Boutheina Bannour1 , Christophe Gaston1 ,
Arnault Lapitre1 , and Pascale Le Gall2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Université Paris-Saclay, CentraleSupélec, F-91192, Gif-sur-Yvette, France

Abstract. Interactions are formal models describing asynchronous com-
munications within a distributed system. They can be drawn in the fash-
ion of sequence diagrams and associated with an operational semantics
in the style of process algebras. In this paper, we propose an algorithm
for offline runtime verification against interactions. Our algorithm deals
with observability issues e.g. that some subsystems may not be observed
or that some events may not be observed when the end of monitoring on
different subsystems cannot be synchronized. We prove the algorithm’s
correctness and assess the performance of an implementation.

Keywords: distributed systems · offline runtime verification · interac-
tion · multitrace semantics · partial observability

1 Introduction

Context. Distributed Systems (DS) have been identified in the recent survey [26]
as one of the most challenging application domains for Runtime Verification
(RV). An important bottleneck is that the formal references against which sys-
tem executions are analyzed are specified using formalisms or logics usually
equipped with trace semantics. Indeed, because DS are composed of subsys-
tems deployed on different computers and communicating via message passing,
their executions are more naturally represented as collections of traces observed
at the level of the different subsystems’ interfaces rather than as single global
traces [7,24]. Those collections can be gathered using a distributed observation
architecture involving several local observation devices, each one dedicated to
a subsystem, and deployed on the same computer as the subsystem it is dedi-
cated to. An approach to confront such collections of local execution traces to
formal references with a trace semantics might consist in identifying the global
traces that result from all possible temporal orderings of the events occurring in
the local traces. If none of those global traces conforms to the formal reference,
then we might conclude that an error is observed [24]. However, the absence of
a global clock implies that, in all generality, it is not possible to synchronize the
⋆ The research leading to these results has received funding from the European Union’s

Horizon Europe programme under grant agreement No 101069748 – SELFY project.

87

endings of the different local observation processes. Therefore, in the process of
reconstructing global traces, some events might be missing in local traces. Such
problems occur whenever, for technical or legal reasons, it is not possible to
observe some subsystems or else the observation has been interrupted too early.

Contributions. In this paper, we propose a Runtime Verification approach
dedicated to DS with an emphasis on overcoming issues of partial observability,
whether due to the absence of a global clock, or to the impossibility of observing
some subsystem executions. Our approach belongs to the family of offline RV
techniques in which traces are logged prior to their analysis. As for formal refer-
ences, we inherit the framework of interaction models from earlier works [20,18].
Interactions describe actor-oriented scenarios and can be represented graphically
in the fashion of UML Sequence Diagrams (UML-SD) [25] or Message Sequence
Charts (MSC) [14]. We designed in [18] an algorithm to decide whether or not a
collection of local traces is accepted by an interaction. However, this algorithm
cannot cope with partial observability. The core contribution of this paper is then
to define an algorithm to tackle those limitations, i.e. to deal with collections of
local traces with missing or incomplete ones. Theorem 1 will enable us to relate
collections of local traces reflecting partially observed executions to those of the
original reference interaction. The key operator in our algorithm is a removal
operator (Definition 5) discarding parts of the interaction relative to unobserved
subsystems. We prove the correctness of our algorithm and argue how the use
of the removal operations allows us to solve partial observability (Theorem 2).
All proofs are available in [19]. Finally, we present some experiments using an
implementation of our algorithm, given as an extension of the HIBOU tool [17].

Related work. Solutions to the oracle problem (offline RV) for DS using local
logs often rely on a preliminary reordering of events using either timestamps
[24] or some happened-before relations (of Lamport [15]) [16,23,7]. In [11,9,12]
such solutions rely on a set of discrete and local behavioral models. DS be-
haviors are modeled by Input/Output Transition Systems (IOTS) [11,12] or by
Communicating Sequential Processes (CSP) [9] and local observations are inter-
twined to associate them with global traces that can be analyzed w.r.t. models.
Those approaches however require to synchronize local observations, based on
the states in which each of the logging processes terminates (e.g., based on quies-
cence states in [11], termination/deadlocks in [9] or pre-specified synchronization
points in [12]). The works [10,24,8,13] focus on verifying distributed executions
against models of interaction (while [10,13] concern MSC, [24] considers chore-
ographic languages, [8] session types, and [4] trace expressions). [10,24] propose
offline RV that relies on synchronization hypotheses and on reconstructing a
global trace by ordering events occurring at the distributed interfaces (by ex-
ploiting the observational power of testers [10] or timestamp information as-
suming clock synchronization [24]). Our RV approach for multitraces does not
require synchronization prerequisites on DS logging. Thus, unlike previous works
on offline RV, we can analyze DS executions without needing a synchronization
hypothesis on the ending of local observations. For online RV, the work [13]
depends on a global component (network sniffer) while the work [8] proposes

88

local RV against projections of interactions satisfying conditions that enforce
intended global behaviors. In contrast to these works, we process collections of
local logs against interactions. The work [4] focuses on how distributed monitors
can be adapted for partial observation. Yet, our notion of partial observation is
distinct from that of [4] where messages are exchanged via channels which are as-
sociated to an observability likelihood. [4] proposes specification transformations
by removing or making optional several identified unobservable events. We in-
stead deal with partial observability from the perspective of analyzing truncated
multitraces due to synchronization issues.

Paper outline. Section 2 discusses the nature of DS, their modelling with in-
teractions and the challenge of applying RV to DS. Section 3 defines multitraces,
interactions and associated removal operations. Section 4 defines and proves the
correctness of our RV algorithm. Section 5 reports experimental results.

2 Preliminaries

Notations Given a set A, A∗ is the set of words on A, with ε the empty word
and the "." concatenation law. For any word w ∈ A∗, |w| is the length of w and
any word w′ is a prefix of w if there exists a word w′′, possibly empty, such that
w = w′.w′′. Let us note w the set of prefixes of a word w ∈ A∗ and W the set of
prefixes of all words of a set W ⊆ A∗. Given a set A, |A| designates its cardinal
and P(A) is the set of all subsets of A.

Distributed Systems From a black box perspective, the atomic concept to de-
scribe the executions of DS is that of communication actions occurring on a
subsystem’s interface. Here a subsystem refers to a software system deployed on
a single machine. Anticipating the use of interactions as models in Section 3.2,
a subsystem interface is called a lifeline and corresponds to an interaction point
on which the subsystem can receive or send some messages. Lifelines are ele-
ments of a set L denoting the universe of lifelines. An action occurring on a
lifeline is defined by its kind (emission or reception, identified resp. by the sym-
bols ! and ?) and by the message which it carries. We introduce the universe
M of messages. Executions observed on a lifeline l can be modelled as execu-
tion traces i.e. sequences of actions. For l ∈ L, the set Al of actions over l is
{l∆m | ∆ ∈ {!, ?}, m ∈ M} and the set Tl of traces over l is A∗

l . For any a ∈ Al
of the form l?m or l!m, θ(a) refers to l.

Fig.1 sketches out an example of DS composed of three remote subsystems,
assimilated to their interface bro, pub and sub. This DS implements a sim-
plified publish/subscribe scheme of communications (an alternative to client-
server architecture). The publisher pub may publish messages on the broker
bro which may then forward them to the subscriber sub if it is already sub-
scribed. Fig.1c depicts an interaction defined between the three lifelines. Each
lifeline is depicted by a vertical line labelled by its name at the top. By default,
the top to bottom direction represents time passing. A communication action
depicted above another one on the same lifeline occurs beforehand. Communi-
cation actions are represented by horizontal arrows labelled with the action’s

89

pub
bro sub

reordering
sub!subscribe
pub!publish
bro?subscribe
bro?publish
bro!publish
sub?publish

(a) Global observation

pub bro sub

pub!publish bro?subscribe
bro?publish
bro!publish

sub!subscribe
sub?publish

(b) Complete local observation

(c) Interaction model

pub bro sub

pub!publish bro?subscribe
bro?subscribe
bro?publish
bro!publish

(d) Partial local observation

Fig. 1: A simple publish/subscribe example: architectures & interaction model

message. Whenever an arrow exits (resp. enters) a lifeline, there is a correspond-
ing emission (resp. reception) action at that point on the line. For example,
the horizontal arrow from the lifeline sub to the lifeline bro indicates that the
subsystem sub sends the message subscribe, denoted as sub!subscribe, which
is then received by the lifeline bro, denoted as bro?subscribe. More complex
behaviors can be introduced through operators (similar to combined fragments
in UML-SD) drawn in the shape of boxes that frame sub-behaviors of interest.
For instance, in Fig.1c, loopS corresponds to a sequential loop. From the per-
spective of the bro lifeline, this implies that it can observe words of the form
(bro?publish)∗bro?subscribe(bro?publish.bro!publish)∗ i.e. it can receive
an arbitrary number of instances of the publish message then one instance of
subscribe and then it can receive and transmit an arbitrary number of publish.
A representative global trace specified by the interaction in Fig.1c is (see Fig.1a):
sub!subscribe.pub!publish.bro?subscribe.bro?publish.bro!publish.sub?publish

This trace illustrates that the pub and sub lifelines can send their respective
messages publish and subscribe in any order since there are no constraints on
their ordering. In contrast, the reception of a message necessarily takes place af-
ter its emission. Since the reception of the message subscribe takes place before
that of the publish message, this last message necessarily corresponds to the
one occurring in the bottom loop. The global trace in Fig.1a is a typical example
of a trace accepted by the interaction in Fig.1c. Indeed, this trace realizes one of
the behaviors specified by the interaction which corresponds to: unfolding zero
times the first loop; realizing the passing of the message subscribe between
lifelines sub and bro; unfolding one time the second loop. None of the prefixes
of this accepted trace is an accepted trace.

90

Accepted multitraces Following the terminology of [7,18], we call multitrace a
collection of local traces, one per remote subsystem. Fig.1b depicts a multitrace
involving 3 local traces: bro?subscribe.bro?publish.bro!publish for subsys-
tem bro, pub!publish for pub, and sub!subscribe.sub?publish for sub. It is
possible to interleave these local traces to obtain the global trace in Fig.1a, i.e.
the multitrace in Fig.1b corresponds to the tuple of projections of the global
trace in Fig.1a onto each of the sub-systems. The tuple of projections of a global
trace is unique. However, conversely, one might compute several global traces
associated to the same tuple of local traces. This is because, in all generality,
there is no ordering between actions occurring on different lifelines. For example,
from the multitrace of Fig.1b, one could reconstruct the global trace:
pub!publish.sub!subscribe.bro?subscribe.bro?publish.bro!publish.sub?publish

The tuple of projections of this global trace is also the multitrace in Fig.1b. With
the algorithm from [18] one can recognize exactly accepted multitraces (e.g. the
one from Fig.1b), which correspond to projections of accepted global traces (e.g.
Fig.1a).

Logging and Partial observability Offline RV requires to collect execution traces
prior to their analyses. In this process, it might be so that some subsystems
cannot be equipped with observation devices. Moreover, due to the absence of
synchronization between the local observations, the different logging processes
might cease at uncorrelated moments. For example, let us consider the multitrace
in Fig.1d as an observed execution of the system considered in Fig.1, where, by
hypothesis, the subsystem sub is not observed. Remark that this multitrace cor-
responds to a partial observation of the multitrace in Fig.1b. Indeed, each trace
corresponding to a given subsystem in Fig.1d is a prefix of the trace correspond-
ing to the same sub-system in Fig.1b. Thus, if sub executions were also observed
and with longer observation times for each local observation processes, it may
well be that one would have observed the multitrace in Fig.1b rather than the
one in Fig.1d. when analyzing the multitrace in Fig.1d against the interaction
in Fig.1c, we need the RV process not to conclude on the occurrence of an error.
Hence, we want to be able to recognize multitraces in which each of the local
traces can be extended to reconstruct a multitrace accepted by the interaction.
Concretely, this means recognizing multi-prefixes of accepted multitraces. Let
us remark that a projection of a prefix of an accepted global trace is a multi-
prefix of an accepted multitrace. However the reverse is not true. For example,
there exists no prefix of a global trace accepted by the interaction in Fig.1c that
projects on the multitrace in Fig.1d. This is because the emission of subscribe
by sub would precede its reception by bro in any accepted global trace. However,
this emission is not observed in the multitrace in Fig.1d. Therefore, dealing with
partial observability does not boil down to a simple adaptation of the algorithm
in [18]. In this paper, the aforementioned two types of partial observation (unob-
served subsystems and early interruption of observation) will be approached in
the same manner, noting in particular that an empty local trace can be seen both
as missing and incomplete. The key mathematical operator used for that pur-
pose consists in the removal of a lifeline from both interactions and multitraces.

91

This operator allows us to define an algorithm for recognizing multi-prefixes of
accepted multitraces while avoiding the complex search for a matching global
execution, taking into account potential missing actions.

3 Multitraces, interactions, and removal operations

3.1 Multitraces

As outlined in Section 2, a DS is a collection of communicating subsystems, each
having a lifeline as local interface. A DS is characterized by a finite set of lifelines
L ⊆ L, called a signature. For L ⊆ L, A(L) denotes the set ∪l∈LAl. Executions
of a DS are associated to multitraces, i.e. collections of traces, one per lifeline:

Definition 1. Given L ⊆ L, the set M(L) of multitraces over L is3
∏
l∈L Tl.

For µ = (tl)l∈L in M(L), we denote by µ|l the trace component tl ∈ Tl and by
µ = {µ′ | µ′ ∈ M(L),∀l ∈ L, µ′

|l ∈ µ|l} the set of its multi-prefixes.

Multi-prefixes are extended to sets: M is the set of all multi-prefixes of all
multitraces in M ⊆ M(L). We denote by εL the empty multitrace in M(L)
defined by ∀l ∈ L, εL|l = ε. Additionally, for any µ ∈ M(L), we use the notations
µ[t]l to designate the multitrace µ in which the component on l has been replaced
by t ∈ Tl and |µ| to designate the cumulative length |µ| = ∑

l∈L |µ|l| of µ.
As discussed in Section 2, two communication actions occurring on different

traces of a multitrace cannot be temporally ordered. Likewise, when several
subsystems are observed concurrently, there is no way to synchronize the endings
of their observations. So, any multitrace µ′ ∈ µ can be understood as a partial
observation of the execution characterized by µ. An edge case of this partial
observation occurs when some of the subsystems are not observed at all, i.e. when
some lifelines are missing. The rmvh function of Definition 2 simply removes the
trace concerning the lifeline h from a multitrace.

Definition 2. For L ⊆ L, the function rmvh : M(L) → M(L \ {h}) is s.t.:
∀µ ∈ M(L), rmvh(µ) = (µ|l)l∈L\{h}

The function rmvh is canonically extended to sets. We introduce operations
to add an action to the left (resp. right) of a multitrace. For the sake of simplicity,
we use the same symbol ^ for these left- and right-concatenation operations:

∀a ∈ A(L),∀µ ∈ M(L), aˆµ = µ[a.µ|θ(a)]θ(a) and µˆa = µ[µ|θ(a).a]θ(a)

Note that for any µ and a, we have |µˆa| = |aˆµ| = |µ|+1. We extend ^ to sets
of multitraces as follows: aˆT = {aˆµ | µ ∈ T} and Tˆa = {µˆa | µ ∈ T}.

For two multitraces µ1 and µ2 in M(L):

– µ1 ∪ µ2 denotes the alternative defined as follows: µ1 ∪ µ2 = {µ1, µ2};
3 Given a family (Ai)i∈I of sets indexed by a finite set I,

∏
i∈I Ai is the set of tuples

(a1, . . . , ai, . . .) with ∀i ∈ I, ai ∈ Ai.

92

– µ1;µ2 denotes their sequencing defined as follows: if µ2 = εL then µ1;µ2 = µ1

else, µ2 can be written as aˆµ′
2 and µ1;µ2 = (µ1ˆa);µ

′
2;

– µ1||µ2 denotes their interleaving and is defined as the set of multitraces
describing parallel compositions of µ1 and µ2:

εL||µ2 = {µ2} µ1||εL = {µ1}
(a1ˆµ1) || (a2ˆµ2) = (a1ˆ(µ1 || (a2ˆµ2))) ∪ (a2ˆ((a1ˆµ1) || µ2)))

Let us remark that µ′ is a prefix of a multitrace µ (i.e. µ′ ∈ µ) iff there exists µ′′

verifying µ′;µ′′ = µ. Operations ∪, ; and || are extended to sets of multitraces as
⋄ : P(M(L))2 → P(M(L)) for ⋄ ∈ {∪, ; , ||}. Operators ; and || being associative,
this allows for the definition of repetition operators in the same manner as the
Kleene star is defined over the classical concatenation. Given ⋄ ∈ {; , ||}, the
Kleene closure ⋄∗ is s.t. for any set of multitraces T ⊆ M(L) we have:

T ⋄∗ =
⋃

j∈N
T ⋄j with T ⋄0 = {εL} and T ⋄j = T ⋄ T ⋄(j−1) for j > 0

M(L) fitted with the set of algebraic operators F = {∪, ; , ||, ;∗, ||∗} is an
F-algebra. The operation rmvh preserves the algebraic structures between the
F-algebras of signatures L and L \ {h}.

Property 1 (Elimination preserves operators). For any µ1 and µ2 in M(L), for
any ⋄ ∈ {∪, ; , ||}, rmvh(µ1 ⋄ µ2) = rmvh(µ1) ⋄ rmvh(µ2).

Property 1 is obtained directly for the union and by induction for the other
cases. Those results can be extended to sets of multitraces and imply that rep-
etitions of those scheduling algebraic operators (with their Kleene closures) are
also preserved by the elimination operator rmvh.

3.2 Interactions ({(pub!publish, ϵ, ϵ)}; {(ϵ, bro?publish, ϵ)});∗
; ({(ϵ, ϵ, sub!subscribe)}; {(ϵ, bro?subscribe, ϵ)})

;

(
({(pub!publish, ϵ, ϵ)}; {(ϵ, bro?publish, ϵ)})
; ({(ϵ, bro!publish, ϵ)}; {(ϵ, ϵ, sub?publish)})

);∗

=

(
ε , bro?subscribe , sub!subscribe

)
(
pub!publish , bro?publish

bro?subscribe , sub!subscribe
)

 pub!publish ,

bro?subscribe
bro?publish
bro!publish

,
sub!subscribe
sub?publish

· · ·

Fig. 2: Semantics of example from Fig.1c

Interaction models, such as the
one in Fig.1c, can be formalized
as terms of an inductive language.
[20,18] consider an expressive lan-
guage with two sequencing oper-
ators, weak and strict, for order-
ing actions globally. Here, as only
collections of remote local traces
are considered, weak and strict se-
quencing can no longer be distin-
guished. This explains why we only consider a unique sequencing operator seq.
Following the syntax from Definition 3, the interaction term of Fig.1c is:
seq(loopS(seq(pub!publish, bro?publish)), seq(seq(sub!subscribe, bro?subscribe),
loopS(seq(seq(pub!publish, bro?publish), seq(bro!publish, sub?publish))))).

93

Definition 3. Given signature L, the set I(L) of interactions over L is the set
of ground terms built over the following symbols provided with arities in N:
− the empty interaction ∅ and any action a in A(L) of arity 0;
− the two loop operators loopS and loopP of arity 1;
− and the three operators seq, par and alt of arity 2.

The semantics of interactions can be defined as a set of multitraces in a de-
notational style by associating each syntactic operator with an algebraic coun-
terpart. This is sketched out in Fig.2 in which the semantics of the interaction
given in Fig.1c is given. The denotational formulation, which is compositional,
is defined in Definition 4 and illustrated in Fig.1c.

Definition 4 (M-semantics). Given L ⊆ L, the multitrace semantics σ|L :
I(L) → P(M(L)) is defined inductively using the following interpretations:
− {εL} for ∅ and {aˆεL} for a in AL;
− ;∗ (resp. ||∗) for loop operator loopS (resp. loopP);
− ; (resp. || and ∪) for binary operator seq (resp. par and alt).

Interactions can also be associated with operational semantics in the style of
Plotkin [21]. Its definition relies on two predicates denoted by ↓ and →: for an
interaction i, i ↓ states that εL ∈ σ|L(i) and i

a−→ i′ states that all multitraces
of the form aˆµ′ with µ′ ∈ σ|L(i′) are multitraces of σ|L(i). This operational
semantics is equivalent to the denotational formulation.

Property 2 (Operational semantics). There exist a predicate ↓⊆ I(L) and a
relation →⊆ I(L)× A(L)× I(L) such that, for any i ∈ I(L) and µ ∈ M(L), the
statement µ ∈ σ|L(i) holds iff it can be proven using the following two rules:

i ↓
εL ∈ σ|L(i)

µ ∈ σ|L(i′) i
a−→ i′

aˆµ ∈ σ|L(i)

Fig. 3: Removing lifeline sub

The proof is a transposition for
multitrace semantics of the proof
in [21] given for global traces. The al-
gebraic characterisation of Definition
4 underpins results involving the use
of the rmvh function while the oper-
ational characterisation of Property 2
is required in the definition and proof
of the RV algorithm. In this paper, we
do not need the inductive definitions
of ↓ and →. It suffices to consider their existence (Property 2). In addition, we
will use the notation i a−→ (resp. i ̸ a−→) when there exists (resp. does not exist) an
interaction i′ s.t. i a−→ i′.

The removal of lifelines for multitraces (cf. Definition 2) has a counterpart for
interactions. On the left of Fig.3 we draw our previous example while highlighting
lifeline sub which we remove to obtain the interaction on the right. Whenever we

94

remove a lifeline l, the resulting interaction does not contain any action occurring
on l. Removal, as defined in4 Definition 5 in a functional style, preserves the term
structure, replacing actions on the removed lifeline with the empty interaction.

Definition 5. For a signature L ⊆ L and a lifeline h ∈ L we define rmvh :
I(L) → I(L \ {h}) s.t. for any interaction i ∈ I(L):
rmvh(i) = match i with
| ∅ → ∅
| a ∈ A(L) → if θ(a) = h then ∅ else a
| f(i1, i2) → f(rmvh(i1), rmvh(i2)) for f ∈ {seq, alt, par}
| loopk(i1) → loopk(rmvh(i1)) for k ∈ {S, P}

Theorem 1 relates the removal operations on multitraces and interactions
with one another. The semantics of an interaction i in which we remove lifeline
h can be obtained by removing lifeline h from all the multitraces of the semantics
of i. This result is obtained reasoning by induction on interaction terms.

Theorem 1. For any signature L, any i ∈ I(L) and any h ∈ L:

σ|L\{h}(rmvh(i)) = rmvh(σ|L(i))

4 Offline RV for multitraces

We aim to define a process to analyze a multitrace µ against a reference in-
teraction i, both defined on a common signature L. To check whether or not a
multitrace µ is accepted by i, i.e. µ ∈ σ|L(i), the key principle given in [18] was
to find a globally ordered behavior specified by i (via the → execution relation)
that matches µ, i.e. an accepted global trace that can be projected into µ. To
do so, it relies on a general rule (i, aˆµ′) ⇝ (i′, µ′) s.t. i a−→ i′, i.e. it explores
all the actions a directly executable from i and that match the head of a local
trace. The analysis is then pursued recursively from (i′, µ′), i.e. the multitrace
where a has been removed and the follow-up interaction i′, until the multitrace
is emptied of actions.

For illustrative purposes, let us consider Fig.4 where each square annotated
with a circled number corresponds to such a tuple (i, µ), with interaction i drawn
on the left and multitrace µ represented on the right. Starting from the tuple
indexed by 3○, with interaction i3 and multitrace µ3 = (ε, bro?subscribe),
one can see that we can reach 4○ by both consuming bro?subscribe from
µ3 and executing it in i3, leading to the tuple (i4, µ4) in 4○. This transition
(i3, bro?subscribeˆ(ε, ε)) ⇝ (i4, (ε, ε)) is based on having i3

bro?subscribe−−−−−−−−−→ i4.
Thus, Fig.4 sketches the construction of a graph whose nodes are pairs of inter-
actions and multitraces and whose arcs are built using the ⇝ relation.

While in [18], we were interested in solving the membership problem "µ ∈
σ|L(i)", we are now interested in defining an offline RV algorithm. In line with

4 We overload the notation rmvh which applies to both multitraces and interactions.

95

rmvsub

pub!publish pub!publish

bro?subscribe

Nok

Ok

0 1

2
3

4

Fig. 4: An exploration s.t. ωL(i, µ) = Pass

the discussion of Section 2 about partial observability, µ reveals an error if µ is
neither in σ|L(i) nor can be extended into an element of σ|L(i) i.e. µ diverges
from i iff µ ̸∈ σ|L(i). We introduce a rule involving the removal operation to
accommodate the need to identify multi-prefixes of multitraces. Indeed, as the
execution relation → only allows executing actions in the global order in which
they are intended to occur, we may reach cases in which the next action which
may be consumed in the multitrace cannot be executed due to having a preceding
action missing in the multitrace.

Let us illustrate this with node 0○ of Fig.4. bro?subscribe is the first action
that occurs on lifeline bro in the multitrace. However, it cannot be executed
because it must be preceded by sub!subscribe. Yet, either because the behavior
on lifeline sub is not observed or because the logging process ceased too early
on sub, it might well be that sub!subscribe occurred in the actual execution
although it was not logged. With our new algorithm, because the condition that
µ|sub = ε is satisfied, from node 0○, we apply a rule yielding the transformation
(i, µ)⇝ (rmvsub(i), rmvsub(µ)), removing lifeline sub, which allows us to pursue
the analysis from node 1○. To summarize, Fig.4 illustrates (part of) the graph
that can be constructed from a pair (i0, µ0) using the relation ⇝. We have 5
nodes numbered from 0 (the initial node of the analysis) to 4. Arcs correspond
to the consumption of an action, the application of the rmv operator, or the
emission of a verdict. The empty multitrace in node 4○ allows us to conclude
µ0 ∈ σ|L(i0).

96

4.1 The algorithm

As the rmv operator has the effect of changing the signature, we introduce the
set IL (resp. ML) to denote the set of all interactions (resp. multitraces) defined
on a signature of L. Let us define a directed search graph with vertices either
of the form (i, µ) ∈ IL × ML or one of two specific verdicts Ok and Nok. We
denote by V the set of all vertices:

V = {Ok,Nok} ∪ (
⋃

L⊆L
I(L)×M(L))

The arcs of G are defined by 4 rules: Ro, Rn leading to respectively the sink
vertices Ok and Nok, Re (for "execute") for consuming actions of the multitrace
according to the → predicate of the operational formulation (cf. Property 2), and
Rr (for "removal"), for removing a lifeline from the interaction and multitrace.

Definition 6 (Search graph). G = (V,⇝) is the graph s.t. for all v, v′ in V,
v ⇝ v′ iff there exists a rule Rx with x ∈ {o, n, e, r} s.t. (Rx) vv′ where rules Rx
are defined as follows, with L ⊆ L, h ∈ L, i, i′ ∈ I(L), and µ, µ′ ∈ M(L):

i εL(Ro)
Ok

i µ
(Rr)

{
(µ ̸= εL)∧
(µ|h = ε)rmvh(i) rmvh(µ)

i µ
(Re)

{∃a ∈ A(L),
µ = aˆµ′ ∧ i a−→ i′i′ µ′

i µ
(Rn)

(∀l ∈ L, µ|l ̸= ε) ∧(∀a ∈ A(L),∀µ′ ∈ M(L),

µ = aˆµ′ ⇒ i ̸ a−→

)
Nok

Rules Re and Rr specify edges of the form (i, µ) ⇝ (i′, µ′) with i′ and µ′

defined on the same signature: the application of Re corresponds to the simul-
taneous consumption of an action at the head of a component of µ and the
execution of a matching action in i while the application of Rr corresponds to
the removal of a lifeline h s.t. µ|h = ε. Moreover, vertices of the form (i, µ) are
not sinks of G. Indeed, if µ = εL then Ro can apply, otherwise µ ̸= εL and: (1)
if at least a component µ|h of µ is empty, then rule Rr can apply. (2) if there
is a match between an action that can be executed from i and the head of a
component of the multitrace then rule Re can apply. (3) if both conditions 1
and 2 do not hold then rule Rn applies.

Proving µ ∈ σ|L(i), amounts to exhibiting a path in G starting from (i, µ)
and leading to the verdict Ok. Fig.4 depicts such a path for the multitrace µ0 =
(pub!publish, bro?subscribe, ε) w.r.t. the interaction i0 of node 0○. A first
step (application of Rr) removes lifeline sub leading to node 1○. This is possible
because µ|sub = ε. From there, by applying ruleRe, the execution of pub?publish
allows to reach either node 2○ or node 3○ depending on the loop used. From
node 3○, the previous removal of lifeline sub has unlocked the execution of
bro?subscribe (application of Re). What remains is εL, and hence we can
apply rule Ro. From the existence of this path leading to Ok we conclude that
µ0 is a multi-prefix of a multitrace of the interaction depicted in Fig.1c.

Property 3 (Finite search space). Let L ⊆ L, µ ∈ M(L) and i ∈ I(L). The
sub-graph of G of all vertices reachable from (i, µ) is finite.

97

We establish this property by using a measure |v| defined on the vertices v in
V by |v| = 0 if v ∈ {Ok,Nok} and |v| = |µ|+ |L|+1 if s = (i, µ) ∈ I(L)×M(L).

Definition 7 (Multitrace analysis). For any L ⊂ L, we define ωL : I(L) ×
M(L) → {Pass, Fail} s.t. for any i ∈ I(L) and µ ∈ M(L):
− ωL(i, µ) = Pass iff there exists a path in G from (i, µ) to Ok
− ωL(i, µ) = Fail otherwise

Given Property 3, Definition 7 is well founded insofar as the sub-graph of G
issued from any pair (i, µ) of V is finite and all paths from (i, µ) can be extended
until reaching a verdict (Ok or Nok). Then, we need to prove that the existence
of a path from (i, µ) to Ok guarantees that µ is a prefix of a multitrace of i, and
that the non-existence of such a path guarantees that µ is not such a prefix. By
reasoning by induction on the measure of the vertices of G, we can establish:

Theorem 2. For any i ∈ I(L) and any µ ∈ M(L):
(
µ ∈ σ|L(i)

)
⇔

(
ωL(i, µ) = Pass

)

4.2 Considerations on implementation

Using a reduction of the 3 SAT problem inspired by [3,18], we can state that the
problem of recognizing correct multi-prefixes w.r.t. interactions is NP-hard:

Property 4. The problem of determining whether or not µ ∈ σ|L(i) is NP-hard.

Given the NP-hardness of the underlying problem, the implementation of
our algorithm, which relies on the exploration of a graph G, uses additional
techniques to reduce the average complexity. Such techniques may include means
to cut parts of the graph, the use of pertinent search strategies and priorities for
the application of the rules. For instance, if Rr is applicable from a node (i, µ),
we can apply rmv on all lifelines which can be removed simultaneously. Also, if
both Rr and Re are applicable from that same node, we can choose not to apply
Re. Those two points are respectively justified by a property of commutativity
for rmv (i.e. rmvh ◦ rmvh′ = rmvh′ ◦ rmvh) and a confluence property for ⇝ (i.e.
if (i, µ) ∗⇝ Ok and (i, µ)⇝ (rmvh(i), rmvh(µ)) then (rmvh(i), rmvh(µ))

∗⇝ Ok).

5 Experimental assessment

5.1 3 SAT benchmarks

We have implemented our approach as an extension of the tool HIBOU [17]. In
light of Property 4, we have compared the results HIBOU obtained on trans-
lated three SAT problems against those of an SAT solver (Varisat [2]). We have
used three sets of problems: two custom benchmarks with randomly generated
problems and the UF20 benchmark [1]. Fig.5 provides details on 2 benchmarks

98

variables 3-10
clauses 4-50
instances 663
SAT 376
UNSAT 287

varisat hibou
min 0.01699 0.0002379
q1 0.01792 0.0012984

Mdn 0.01806 0.0027920
M 0.01833 0.0043448
q3 0.01848 0.0053158

max 0.02892 0.0267174
σ 0.001017846 0.004637261

(a) Input problems and output results for ’small’ custom benchmark

variables 20
clauses 91
instances 1000
SAT 1000
UNSAT 0

varisat hibou
min 0.01559 0.007638
q1 0.01667 0.091421

Mdn 0.01833 0.229745
M 0.01847 0.313901
q3 0.01929 0.462385

max 0.03989 1.666777
σ 0.00255181 0.2865485

(b) Input problems and output results for UF-20 benchmark

Fig. 5: Experiments on 3SAT benchmarks (times in seconds)

with, on the top left, information about the input problems (numbers of vari-
ables, clauses, instances), on the bottom left statistical information about the
time required for the analysis using each tool, and, on the right a correspond-
ing scatter plot. In the plot, each point corresponds to a given 3-SAT problem,
with its position corresponding to the time required to solve it. Points in red are
unsatisfiable problems while those in blue are satisfiable.

5.2 Use cases experiments

To consider concrete and varied interactions, we experiment with four examples:
a protocol for purchasing books [4], a system for querying complex sensor data
[5], the Alternating Bit Protocol [22] and a network for uploading data to a server
[6]. Fig.6 partially reports on those experiments. For each example, we generated
randomly accepted multitraces (ACPT) up to some depth, for which we then
randomly selected prefixes (PREF). For each such prefix, we then performed
mutations of three kinds: swapping actions (SACT), swapping trace components

99

(SCMP) and inserting noise (NOIS). We report for each category of multitraces
times to compute verdicts in Fig.6. As expected, running the algorithm on those
multitraces recognizes prefixes and mutants which go out of specification.

(a) Network [6]
(b) ABP [22]

Fig. 6: Experimental data on a selection of use cases (times in seconds)

6 Conclusion

We have proposed an algorithm for offline RV from multitraces (sets of local exe-
cution logs collected on the DS) against interaction models (formal specifications
akin to UML-SD/MSC). These multitraces can be partial views of DS executions
because some components may either not be observed at all or their observa-
tion may have ceased too early. We have proved the correctness of our algorithm
which boils down to a graph search. This search is based on two principles, either
we match actions of the interaction against those of the input multitrace, or we
apply a removal operation on multitraces and interactions. Removal steps allow
dealing with observability via disregarding components which are no longer ob-
served parts of the interaction. Future works include other uses of the removal
operator (e.g. for performance improvements on RV).

References

1. SATLIB - Benchmark. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
2. Varisat CDCL solver. https://docs.rs/varisat/latest/varisat/
3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC

graphs. In: Automata, Languages and Programming, 28th Int. Colloquium, ICALP
2001. LNCS, vol. 2076, pp. 797–808. Springer (2001)

4. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent
interaction protocols when monitoring partially observable multiagent systems. In:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex-
ity: The PAAMS Collection. pp. 59–71. Springer (2018)

100

5. Bakillah, M., Liang, S., Zipf, A., Mostafavi, M.A.: A dynamic and context-aware
semantic mediation service for discovering and fusion of heterogeneous sensor data.
Journal of Spatial Information Science 6, 155–185 (06 2013)

6. Bejleri, A., Domnori, E., Viering, M., Eugster, P., Mezini, M.: Comprehensive
multiparty session types. The Art, Science, and Engineering of Programming 3
(02 2019)

7. Benharrat, N., Gaston, C., Hierons, R.M., Lapitre, A., Le Gall, P.: Constraint-
based oracles for timed distributed systems. In: Testing Software and Systems. pp.
276–292. Springer (2017)

8. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

9. Cavalcanti, A., Gaudel, M., Hierons, R.M.: Conformance relations for distributed
testing based on CSP. In: IFIP ICTSS. LNCS, vol. 7019, pp. 48–63. Springer (2011)

10. Dan, H., Hierons, R.M.: The oracle problem when testing from MSCs. Comput. J.
57(7), 987–1001 (2014)

11. Hierons, R.M., Merayo, M.G., Núñez, M.: Controllable test cases for the distributed
test architecture. In: ATVA. LNCS, vol. 5311, pp. 201–215. Springer (2008)

12. Hierons, R.M., Merayo, M.G., Núñez, M.: Scenarios-based testing of systems with
distributed ports. Softw. Pract. Exp. 41(10), 999–1026 (2011)

13. Inçki, K., Ari, I.: A novel runtime verification solution for IoT Systems. IEEE
Access 6, 13501–13512 (2018)

14. ITU: Message Sequence Chart (MSC), http//www.itu.int/rec/T-REC-Z.120
15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:

Concurrency: the Works of Leslie Lamport, pp. 179–196. ACM (2019)
16. Mace, J., Roelke, R., Fonseca, R.: Pivot tracing: dynamic causal monitoring for

distributed systems. In: SOSP. pp. 378–393. ACM (2015)
17. Mahé, E.: Hibou tool. github.com/erwanM974/hibou_label (2022)
18. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: A small-step approach

to multi-trace checking against interactions. p. 1815–1822. SAC ’21, ACM (2021)
19. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: Dealing with ob-

servability in interaction-based offline runtime verification of distributed systems.
CoRR (2022), https://arxiv.org/abs/2212.09324

20. Mahé, E., Gaston, C., Le Gall, P.: Revisiting semantics of interactions for trace
validity analysis. In: FASE. LNCS, vol. 12076, pp. 482–501. Springer (2020)

21. Mahé, E., Gaston, C., Le Gall, P.: Equivalence of denotational and operational
semantics for interaction languages. In: TASE. pp. 113–130. Springer (2022)

22. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum. pp.
291–306. Elsevier (1997)

23. Neves, F., Machado, N., Pereira, J.: Falcon: A practical log-based analysis tool for
distributed systems. In: DSN. pp. 534–541. IEEE Computer Society (2018)

24. Nguyen, H.N., Poizat, P., Zaïdi, F.: Passive conformance testing of service chore-
ographies. In: ACM SAC 2012. pp. 1528–1535 (2012)

25. OMG: Unified Modeling Language, http://www.uml.org
26. Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D., Colombo,

C., Falcone, Y., Francalanza, A., Krstic, S., Lourenço, J.M., Nickovic, D., Pace,
G.J., Rufino, J., Signoles, J., Traytel, D., Weiss, A.: A survey of challenges for
runtime verification from advanced application domains (beyond software). Formal
Methods Syst. Des. 54(3), 279–335 (2019)

101

Genetic Algorithm for Program Synthesis

Yutaka Nagashima1[0000−0001−6693−5325]

Independent, Cambridge, the UK

Abstract. A deductive program synthesis tool takes a specification as
input and derives a program that satisfies the specification. The draw-
back of this approach is that search spaces for such correct programs tend
to be enormous, making it difficult to derive correct programs within a
realistic timeout. To speed up such program derivation, we improve the
search strategy of a deductive program synthesis tool, SuSLik, using evo-
lutionary computation. Our cross-validation shows that the improvement
brought by evolutionary computation generalises to unforeseen problems.

1 Introduction

A far-fetched goal of artificial intelligence research is to build a system that
writes computer programs for humans. To achieve this goal, researchers take
two distinct approaches: deductive program synthesis and inductive program
synthesis. Both approaches attempt to produce programs requested by human
users. The difference lies how they produce programs: deductive synthesis tries
to deduce programs that satisfy specifications, while inductive program synthesis
tries to induce programs from examples.

While such inductive synthesis alleviates the burden of implementation by
guessing programs from given input-output examples, in inductive synthesis re-
sulting programs are not trustworthy. Deductive synthesis overcomes this lim-
itation with formal specifications: it allows users to formalise what they want
as specifications, whereas inductive synthesis tools guess how programs should
behave from examples provided by users. Thus, in deductive synthesis providing
formal specifications remains as users’ responsibility. The upside of deductive
synthesis is, however, users can obtain correct programs upon success.

SuSLik [19], for example, is one of such deductive synthesis tools. It takes a
specification provided by humans and attempts to produce heap-manipulating
programs satisfying the specification in a language that resembles the C lan-
guage. Internally, this derivation process is formulated as proof search: SuSLik
composes a heap-manipulating program by conducting a best-first search for
a proof goal presented as specification. The drawback is that the search algo-
rithm often fails to find a proof within a realistic timeout. That is, even we
pass a specification to SuSLik, SuSLik may not produce a program satisfying
the specification. According to Itzhaky et al. [5], different synthesis tasks benefit
from different search parameters, and that we might need a mechanism to tune
SuSLik ’s search strategy for a given synthesis task.

102

2 SuSLik’s Search Strategy

SuSLik synthesises a program by searching for a corresponding proof. We can
see SuSLik’s proof search as an exploration of an OR-tree, nodes of the tree
represent (intermediate) synthesis goals, while edges of the tree represent rule
applications. The shape of such search tree is not known in advance, and the
task of SuSLik is to identify a solved node, in which a proof is complete.

current generation

A B
A

E F

other winnerschampion losers

G H

next generation

A A’A C B’

mutated
championchampion other winners

C’

mutated
winners

training
dataset

validation
dataset

B C D E F G

A A’ A’’ B C B’ C’

Fig. 1: Mutation and Elitist Selection

Since such OR-trees can
be too large to find proofs
within a realistic timeout,
SuSLik narrows the search
space using a proof strategy.
Essentially, proof strategy in
SuSLik is a function that
takes a synthesis goal and re-
turns an ordered list of rules
to apply next. Itzhaky et al.
developed the default strat-
egy by manually encoding hu-
man expertise. For example, the default strategy precludes the application of a
rule called CALL when another rule CLOSE has been applied before reaching the
current node. This way, the SuSLik rules are grouped into 10 ordered lists, and
the order of these rules in the lists define how SuSLik explores the corresponding
OR-tree.

Another decision SuSLik has to make for an effective search is to select the
next node to expand. The current version of SuSLik make this decision using a
cost function, manually developed and tuned by Itzhaky et al. [5].

Both the weights of the cost function and orders of derivation rules are manu-
ally tuned for the benchmark used in their evaluation [5]; however, as we show in
Section 4, our evolutionary framework finds better strategies through evolution.

3 Evolutionary Computation for SuSLik

The aim of our evolutionary computation is to optimise the order of each group of
derivation rules and the weights of the cost function, which is used to implement
best-first search.

Algorithm 1 summarises the genetic algorithm we used in our framework
to improve the search strategy of SuSLik. Firstly, the algorithm takes a set
of training problems an inputs, using which we evolve SuSLik instances over 40
generations. Line 1 defines the initial population. Each individual in a population
is evaluated according to the fitness function described in Section 3.

For each generation, we copy individuals from the previous iteration (Line 6),
mutate them (Line 7), evaluate individuals (Line 8). Then, we sort all individuals
in the current generation based on their performance (Line 9 - 10). And we
continue to the next generation using the best 20 individuals from the current

103

pool. In the following, we explain the mutation algorithm, the fitness function,
and our selection algorithm.

Mutation. As we explained in Section 2, by default a search strategy of SuSLik
is defined by two factors: the order of rule application and weights of each node
in the search tree. To determine an effective way to apply genetic algorithms
to program synthesis in SuSLik, we implemented the following three different
mutation algorithms:

– Order-only mutation changes only the order of rule application for each node.
– General rule-weight mutation changes the weights of each node based on

what rules have been applied to reach that node.
– Goal-specific rule-weight mutation allows SuSLik to choose a weight for each

rule based on properties of a node during a search.

Algorithm 1 Evolutionary Computa-
tion for SuSLik

Input: synthesis problems for SuSLik
Output: a SuSLik search strategy

1: Let old_pop be the initial population.
2: fitness(old_pop)
3: generation← 1
4: while generation ≤ 40 do
5: generation← generation+ 1
6: new_pop← old_pop
7: mutate(new_pop)
8: fitness(new_pop)
9: whole_pop← old_pop+ new_pop

10: sort (whole_pop)
11: old_pop← take (whole_pop, 20)
12: end while

Fitness. The fitness function mea-
sures the performance of SuSLik in-
stances. More specifically, it measures
how many derivation problems each
SuSLik instance solves within the
timeout of 2.5 seconds for each prob-
lem. When multiple SuSLik instances
solve the same number of derivation
problems, the fitness function uses
the numbers of rules fired by the in-
stances as a tie-breaker: it considers
that the instance that solves a certain
number of problems with a smaller
number of rule applications is bet-
ter than another instance that solves
the same number of problems with a
larger number of rule applications.

Selection. We adopt a version of elitist
selection as our selection method: we pass individuals from the current genera-
tion to the next generation. by copying them and mutating them if they show
better performance in the current generation. Figure 1 provides the schematic
view of our elitist selection. Unlike the standard elitist selection algorithm, ours
prioritizes the best individual in each generation to speed up the evolution: the
best individual in each generation, called champion, is entitled with three chil-
dren, one original copy without mutation and two mutated children, whereas
each of other 19 winners has one original copy and only one mutated child in
the next generation.

Note that each individual has two kinds of properties to mutate: the order of
derivation rules, and weights used in the cost function. While we represent the

104

weights as floating point numbers, we adopt permutation encoding for the orders
of derivation rules.

For each permutation encoding, each individual has the probability of 0.1 to
be moved, while we change weights by multiplying a random number between 0.8
and 1.2. In our framework, we do not apply crossover to permutation encoding:
since our sequences denoting rule orders tend to be short, we are not sure if
crossovers would result in a better performance of evolution.

Our evolutionary computation for program synthesis differs from genetic pro-
gramming [9] or evolutionary programming [1]: we did not directly apply simu-
lated evolution to programs, but our framework improves the search mechanism
for deriving correct programs through evolution. We take this approach to take
the best of both worlds: the correctness of resulting programs guaranteed by the
deductive synthesis and its certification tool, and the search heuristics enhanced
through evolutionary computation.

4 Evaluation

We conducted cross-validations to evaluate what improvements our evolutionary
computation framework brought to SuSLik. We measured how many synthesis
problems SuSLik failed to solve with in 2.5 seconds of timeout. For this eval-
uation, we used a consumer laptop running Ubuntu 20.04.3 LTS on a machine
with 16 CPUs of AMD Ryzen 7 4,800H with Radeon Graphics and 15,854MB
of main memory.

As SuSLik is a new tool, we have only 65 problems available in our bench-
mark: problems from a preceding work on SuSLik [5] and new problems prepared
for this project. These problems include tasks on various data-structures such as
integers, singly linked lists, sorted lists, doubly linked lists, lists of lists, binary
trees, and packed trees.

Firstly, we randomly split our benchmarks into two groups: the validation
dataset and training dataset. Then, using the training dataset we apply our
evolutionary computation described in Algorithm 1 to evolve SuSLik’s search
strategy. As explained in Section 3, the output of our evolutionary computa-
tion is just one search strategy produced after 40 generations. However, in this
experiment we conducted cross-validations using the best individual from the
training set for each generation to see how our framework produces transferable
improvement over generations.

To reduce the influence from a specific random split, we conducted this exper-
iment four times, and the result of each experiment is illustrated from Figure 2
to Figure 5. In these figures, the horizontal axes represent the number of genera-
tions, while the vertical axes represent the number of synthesis problems SuSLik
did not solve within the timeout.

These figures show that when adopting the general rule-weight mutation,
our evolutionary framework managed to improve SuSLik’s capability to find
solutions in validation sets, even though evolution is based on training sets.
That is, somewhat contrarily to the prediction by Itzhaky introduced in Section

105

0 10 20 30 40

16

18

20

22

Generation.

U
ns

ol
ve

d
pr

ob
le

m
s

ou
t

of
33

.

order-only
general rule-weight

goal-specific rule-weight

Fig. 2: Cross-validation 1

0 10 20 30 40

14

16

18

Generation.

U
ns

ol
ve

d
pr

ob
le

m
s

ou
t

of
24

.

order-only
general rule-weight

goal-specific rule-weight

Fig. 3: Cross-validation 2

0 10 20 30 40

14

16

18

20

22

Generation.

U
ns

ol
ve

d
pr

ob
le

m
s

ou
t

of
34

.

order-only
general rule-weight

goal-specific rule-weight

Fig. 4: Cross-validation 3

0 10 20 30 40
14

16

18

20

22

24

Generation.

U
ns

ol
ve

d
pr

ob
le

m
s

ou
t

of
34

.

order-only
general rule-weight

goal-specific rule-weight

Fig. 5: Cross-validation 4

1, we found that there are strategies that tend to perform better for unforeseen
problems, and we can find such strategies using evolutionary computation.

On the other hand, the order-only mutation and goal-specific rule-weight
mutation resulted in less promising results. In particular, the goal-specific rule-
weight mutation over-fitted to training data in Figure 2 and Figure 5, probably
due to its capability to fine tune the strategy for our small dataset.

5 Discussion

The limited size of available dataset is the main challenge we faced in this project.
This problem is partially unavoidable since program synthesis itself is still an
emerging field in Computer Science. Other AI projects for interactive theorem
provers take advantage of large existing proof corpora for training. For example,
Nagashima built a tactic prediction tool, PaMpeR [16], for Isabelle/HOL by ex-
tracting 425,334 data points [13] from the Archive of Formal Proofs (AFP) [8]. Li

106

et al. also mined the AFP and produced 820K training examples for conjectur-
ing. For Coq, Yang et al. constructed a dataset containing 71K proofs from 123
projects [21], whereas Huang et al. [4] extracted a dataset consisting of 1,602 lem-
mas from the Feit-Thompson formalization. For HOL Light [3], The HOLStep [6]
used 1,013,046 training examples and 196,030 testing examples extracted from
11,400 proofs, while the HOList project presented a benchmark based on 2,199
definitions and 29,462 theorems and lemmas. These projects managed to gather
large data sets since their underlying theorem provers, Isabelle/HOL, Coq, and
HOL Light, have a larger user base than SuSLik [19] does.

For the moment, our framework improves static parameters for SuSLik. That
is, the resulting weights and rule orders are fixed for all intermediate synthe-
sis problems. Our evaluation has shown that our static parameter optimisation
(general rule-weight mutation) using evolutionary computation generalises well:
a SuSLik instance that performs well for a training dataset tends to perform
well for an evaluation dataset. We expected that we could achieve even better
performance by producing dynamic parameters (goal-specific rule-weight) for
SuSLik: functions that inspect a node at hand and decide on a promising rule
order and weights for that node. Our efforts in this direction are, unfortunately,
unsuccessful so far. We hope that a larger training dataset would allow for such
optimisation in the future.

6 Related Work

Despite the current trend of applying deep learning to theorem proving, we
consciously avoided deep learning in this project, as we have a limited number
of synthesis problems at hand.

Even though there was an attempt to use reinforcement learning [20] for a
connection-style proof search [7]; we mindfully chose evolutionary computation
over reinforcement learning: since we do not have a changing environment in our
setting, it is unclear if we gain any benefits from having two metrics, reward func-
tion for the long term goal and value function for the short term benefit. Instead,
we improved SuSLik’s default search strategy for randomly chosen fixed training
problem sets and measured how the improvement generalizes to validation sets.

When implementing our framework for evolutionary computation, we took
the advantage of a Python framework for evolutionary computation called DEAP
[2], even though SuSLik itself is implemented in Scala.

Previously, we attempted to improve proof strategies [17] for Isabelle/HOL
using evolutionary computing [11]. However, the focus of that project shifted to
the prediction of induction arguments [14, 15] using meta-languages [10, 12].

Nawaz et al. used a genetic algorithm to evolve random proof sequences to
target proofs. The drawback of their approach is that the fitness function used
in the genetic algorithm relies on the existence of a proof for a given problem.
Therefore, this framework is not applicable to open conjectures without existing
proofs [18].

107

Acknowledgment

We would like to thank Andreea Costea for preparing additional SuSLik prob-
lems for cross-validations.

References

1. Fogel, L., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evo-
lution (1966)

2. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13,
2171–2175 (jul 2012)

3. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J.
(eds.) Formal Methods in Computer-Aided Design, First International Confer-
ence, FMCAD ’96, Palo Alto, California, USA, November 6-8, 1996, Proceed-
ings. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer (1996).
https://doi.org/10.1007/BFb0031814, https://doi.org/10.1007/BFb0031814

4. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: A learning environ-
ment for theorem proving. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net
(2019), https://openreview.net/forum?id=r1xwKoR9Y7

5. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Deduc-
tive synthesis of programs with pointers: Techniques, challenges, opportuni-
ties - (invited paper). In: Silva, A., Leino, K.R.M. (eds.) Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12759, pp. 110–134. Springer (2021). https://doi.org/10.1007/978-3-030-81685-
8_5, https://doi.org/10.1007/978-3-030-81685-8_5

6. Kaliszyk, C., Chollet, F., Szegedy, C.: Holstep: A machine learning
dataset for higher-order logic theorem proving. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017),
https://openreview.net/forum?id=ryuxYmvel

7. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 8836–8847 (2018),
https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-
Abstract.html

8. Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: The Archive of Formal Proofs
(2004), https://www.isa-afp.org/

9. Koza, J.R.: Genetic programming - on the programming of computers by means
of natural selection. Complex adaptive systems, MIT Press (1993)

10. Nagashima, Y.: LiFtEr: Language to encode induction heuristics for Is-
abelle/HOL. In: Lin, A.W. (ed.) Programming Languages and Systems -
17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, Decem-
ber 1-4, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11893,
pp. 266–287. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6_14,
https://doi.org/10.1007/978-3-030-34175-6_14

108

11. Nagashima, Y.: Towards evolutionary theorem proving for Isabelle/HOL.
In: López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO 2019, Prague, Czech Republic, July 13-17, 2019.
pp. 419–420. ACM (2019). https://doi.org/10.1145/3319619.3321921,
https://doi.org/10.1145/3319619.3321921

12. Nagashima, Y.: Definitional quantifiers realise semantic reasoning for proof by
induction. CoRR abs/2010.10296 (2020), https://arxiv.org/abs/2010.10296

13. Nagashima, Y.: Simple dataset for proof method recommendation in is-
abelle/hol. In: Benzmüller, C., Miller, B.R. (eds.) Intelligent Computer Math-
ematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July
26-31, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12236,
pp. 297–302. Springer (2020). https://doi.org/10.1007/978-3-030-53518-6_21,
https://doi.org/10.1007/978-3-030-53518-6_21

14. Nagashima, Y.: Smart induction for Isabelle/HOL (tool paper). In: 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24,
2020. pp. 245–254. IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-
042-6_32, https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32

15. Nagashima, Y.: Faster smarter proof by induction in Isabelle/HOL. In: Zhou,
Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August
2021. pp. 1981–1988. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/273,
https://doi.org/10.24963/ijcai.2021/273

16. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation sys-
tem for Isabelle/HOL. In: Huchard, M., Kästner, C., Fraser, G. (eds.)
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2018, Montpellier, France, September 3-
7, 2018. pp. 362–372. ACM (2018). https://doi.org/10.1145/3238147.3238210,
https://doi.org/10.1145/3238147.3238210

17. Nagashima, Y., Kumar, R.: A proof strategy language and proof script gener-
ation for Isabelle/HOL. In: de Moura, L. (ed.) Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Swe-
den, August 6-11, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10395, pp. 528–545. Springer (2017). https://doi.org/10.1007/978-3-319-63046-
5_32, https://doi.org/10.1007/978-3-319-63046-5_32

18. Nawaz, M.Z., Hasan, O., Nawaz, M.S., Fournier-Viger, P., Sun, M.: Proof
searching in HOL4 with genetic algorithm. In: Hung, C., Cerný, T., Shin,
D., Bechini, A. (eds.) SAC ’20: The 35th ACM/SIGAPP Symposium on Ap-
plied Computing, online event, [Brno, Czech Republic], March 30 - April
3, 2020. pp. 513–520. ACM (2020). https://doi.org/10.1145/3341105.3373917,
https://doi.org/10.1145/3341105.3373917

19. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating
programs. Proc. ACM Program. Lang. 3(POPL), 72:1–72:30 (2019).
https://doi.org/10.1145/3290385, https://doi.org/10.1145/3290385

20. Sutton, R.S., Barto, A.G.: Reinforcement learning: An in-
troduction. IEEE Trans. Neural Networks 9(5), 1054–
1054 (1998). https://doi.org/10.1109/TNN.1998.712192,
https://doi.org/10.1109/TNN.1998.712192

21. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th In-

109

ternational Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp.
6984–6994. PMLR (2019), http://proceedings.mlr.press/v97/yang19a.html

110

Template-Based Conjecturing for Automated
Induction in Isabelle/HOL

Yutaka Nagashima[0000−0001−6693−5325], Zijin Xu[0000−0001−7230−0131], Ningli
Wang[0000−0001−7775−436X], Daniel Sebastian Goc[0000−0002−2347−8037], and

James Bang[0000−0001−9345−3479]

Huawei Cambridge Research Centre

Abstract. Proof by induction plays a central role in formal verification.
However, its automation remains as a formidable challenge in Computer
Science. To solve inductive problems, human engineers often have to
provide auxiliary lemmas manually. We automate this laborious process
with template-based conjecturing, a novel approach to generate auxiliary
lemmas and use them to prove final goals. Our evaluation shows that our
working prototype, TBC, achieved 40 percentage point improvement of
success rates for problems at intermediate difficulty level.

1 Introduction

Consider the following definitions of add and even on natural numbers:

add 0 m = m
add (Suc n) m = Suc (add n m)

even 0 = True

even (Suc 0) = False

even (Suc (Suc n)) = even n

Intuitively, the following statement holds: even (add n n).
However, if we apply structural induction on n, the simplification based on

the definitions of add and even gets stuck at even (add n n)⇒ even (S (add

n (S n))) when attacking the induction step. This is due to the definition of
add, which does not allow us to operate on its second argument. Hence, if we
want to prove this statement, we need to introduce auxiliary lemmas.

What lemmas should we introduce? Empirically, we know various mathemat-
ical structures share well-known algebraic properties such as associativity and
commutativity. For example, our example problem uses add, which satisfies the
following properties:

add n (add m k) = add (add n m) k (add is associative)

add n m = add m n (add is commutative)

111

The commutative property of add allows us to operate on its second argu-
ment. Hence, if we prove this property, we can revert back to the original goal
and finish its proof.

To automate this process, this paper introduces TBC, a tool that produces
such template-based conjectures and attempts to prove them as well as the
original proof goal in Isabelle/HOL [19]. For example, when applied to even

(add n n), TBC first proves 10 conjectures then proves the original goal using
two of them as shown in Program 4 in Appendix.

We chose Isabelle/HOL to exploit its powerful proof tactics and counter-
example finders; however, the underlying idea of template-based conjecturing is
not specific to Isabelle/HOL: we can build similar systems for other provers if
they are equipped with equivalent tools. We developed TBC under the following
research hypothesis:

We can improve the proof automation of inductive problems by produc-
ing and proving conjectures based on fixed but general properties about
relevant functions.

Our contributions are:

– the working prototype of a powerful inductive prover based on template-
based conjecturing and newly developed default strategy (Section 2.1),

– the identification of useful properties (Section 2.2), and

– extensive evaluations of TBC to test our research hypothesis (Section 3).

2 System Description

round = 0?

attack remaining
conjectures

round := round + 1

make property-
based conjectures

end proved?
yes

no

yes

no

refute property-
based conjectures

start attack the
original goal

Fig. 1: Workflow of TBC

112

2.1 Overview

Figure 1 shows how TBC attacks inductive problems using template-based con-
jecturing. Given an induction problem, the tool first attempts to prove the goal
using a default strategy, TBC_Strategy, written in the proof strategy language,
PSL [17]. As shown in Program 1, TBC_Strategy combines Isabelle’s proof tac-
tics, such as auto and clarsimp, and other sub-tools, such as smart induction
[13–15] and Sledgehammer [21] to prove the goal completely. That is, PSL uses
Sledgehammer as a sub-tool, even though Sledgehammer itself is a meta-tool
that uses external provers and Isabelle’s tactics to prove given problems.

As PSL is a new meta-tool, we first explain the language constructs in
Program 1. Ors is a combinator for deterministic choice, whereas Thens and
PThenOne combine sub-strategies sequentially. Subgoal lets PSL focus on the
first sub-goal, temporarily hiding other sub-goals from the scope, while IsSolved
checks if all proof obligations are solved within the current scope. Auto, Clarsimp,
and Fastforce correspond to Isabelle’s default tactics of the same name, while
Hammer calls Sledgehammer [21] and Smart Induct applies 5 promising candi-
dates of proof by induction [14, 15]. Essentially, this strategy applies increasingly
expensive sub-strategies to solve proof goals using backtracking search.

If TBC_Strategy fails to prove the goal, it produces conjectures based on
properties specified in advance, following the process explained in Section 2.2.
Then, the tool attempts to refute the conjectures using Isabelle’s counter-example
generators: Quickcheck [2] and Nitpick [1]. After filtering out refuted conjectures,
TBC attempts to prove the remaining conjectures using the default strategy.
While doing so, TBC registers proved conjectures as auxiliary lemmas, so that
it can use them to prove other conjectures.

For example, TBC Strategy finds the following proof script for the commuta-
tivity of add. To demonstrate how TBC Strategy finds proofs using backtracking
search, we highlighted the parts of Program 1 that were not backtracked but re-
sulted in this script. We invite readers to compare these highlighted parts in
Program 1 against the resulting script and to find out which proof tactic Sledge-
hammer used to prove the corresponding sub-goal. 1

lemma commutativity: "add var 1 var 2 = add var 2 var 1"
apply (induct_tac "var 1")

apply (simp add : identity)

subgoal

apply clarsimp

subgoal

apply (induct_tac "var 2")

apply auto

done

done

done

1 Answer: Sledgehammer used the simp tactic with an auxiliary lemma about identity.
Furthermore, IsSolved resulted in the done command in the script.

113

Program 1 TBC Strategy: TBC’s default strategy.

Ors [

Thens [Auto, IsSolved],

PThenOne [Smart_Induct, Thens [Auto, IsSolved]],

Thens [Hammer, IsSolved],

PThenOne [

Smart_Induct,

Ors

[Thens [

Repeat (

Ors [

Fastforce,

Hammer,

Thens [Clarsimp, IsSolved],

Thens [

Subgoal,

Clarsimp,

Repeat (

Thens [Subgoal,

Ors [Thens [Auto, IsSolved],

Thens [Smart_Induct, Auto, IsSolved]]]

),

IsSolved

]

]

),

IsSolved

]

]

]

]

After processing the list of conjectures, TBC comes back to the original goal.
This time, it attacks the goal, using proved conjectures as auxiliary lemmas. If
TBC still fails to prove the original goal, it again attacks the remaining conjec-
tures hoping that proved conjectures may help the strategy to prove remaining
ones. By default, TBC gives up after the second round and shows proved conjec-
tures and their proofs in Isabelle’s standard editor’s output pane, so that users
can exploit them when attacking original goals manually.

The seamless integration of TBC into the Isabelle ecosystem lets users build
TBC as an Isabelle theory using Isabelle’s standard build command without
installing additional software. Furthermore, when TBC finds a proof for the
original goal, our tool shows the final proof as well as proved conjectures with
their proofs in the output pane as shown in Fig. 2. Users can copy and paste
them with a single click to the right location of their proof scripts. The produced
scripts are human readable, and Isabelle can check them without TBC.

114

Fig. 2: Screenshot of Isabelle/HOL with TBC. The upper pane shows the defini-
tion of a type and functions. The new command prove by conjecturing invokes
TBC, which presents the proof script appearing in the lower pane.

115

Program 2 The Complete List of Template-Based Conjectures. We added the
highlighted four conjectures after manually solving some benchmark problems.
One can see that none of these conjectures are specific to particular problems.

associativity f (f (x, y), z) = f (x, f (y, z))
identity element f (e, x) = x or f (x, e) = x for some e

commutativity f (x, y) = f (y, x)
idempotent element f (e, e) = e for some e

idempotency f (x, x) = x
distributivity f (x, g (y, z)) = g (f (x, y), f (x, z))
anti-distributivity f (g (x, y)) = g (f y, f x)
homomorphism f (g (x, y)) = g (f x, f y)
transitivity x R y −→ y R z −→ x R z
symmetry x R y −→ y R x
connexity x R y ∨ y R x ∨ (x = y)
reflexivity x R x
square f (f x) = x
swap-unar f (x, g y) = f (g x, y)
projection f (f x) = f x
composite_commutativity f (g (x, y)) = f (g (y, x))

2.2 Template-Based Conjecturing

As mentioned in Section 2.1, our tool produces conjectures based on 16 templates
specified in advance. 12 of them are either well-known algebraic properties, such
as associative template, or relational properties, such as transitivity. Note that
we added the 4 highlighted templates based on the feedback from students who
manually solved several benchmark problems. None of these templates are spe-
cific to particular functions.

To produce conjectures for such templates, TBC first collects functions ap-
pearing in the original proof goal. Then, it looks for the definitions of these
functions and adds functions in these definitions into the list of functions for con-
jecturing. Then, TBC filters out functions defined within the standard library
since the standard library already contains useful auxiliary lemmas for them.
Finally, TBC creates conjectures by filling templates with these functions.

3 Evaluation

3.1 Benchmark and Environment

We evaluated our tool using Tons of Inductive Problems (TIP) [6], which is
a benchmark consisting of 462 inductive problems. TIP consists of three main
problem sets: 85 problems in Isaplanner, 50 in Prod, and 327 in TIP15. Isaplan-
ner is the easiest, whereas Prod contains problems at the intermediate difficulty
level, and TIP15 has difficult problems, such as Fermat’s Last Theorem.

The advantage of using TIP is that each problem is complete within a single
file. That is, data types and functions are defined afresh within each problem

116

file, instead of using the standard definition. For example, our running example
problem from Section 1 is formalised as an independent Isabelle theory file in
the Prod set in TIP. The functions, add and even, are defined afresh in this file,
instead of using the default ones from the standard library. This allowed us to
ignore manually developed lemmas for similar functions in the standard library.
This way, by using TIP, we focused on TBC’s conjecturing capability to prove
the final goal.

In this experiment, we set the following timeouts for the counter-example
generators: one second for Quickcheck, two seconds for Nitpick. The timeout for
Sledgehammer is more flexible: 10 seconds when attacking conjectures in n-th
round where n is an odd number, whereas 30 seconds when attacking conjectures
in n-th round where n is an even number or attacking the original goals.

However, when measuring the performance of TBC against TIP15 problems,
we set the following short timeouts to process 327 problems using computational
resources available to us: 5 seconds for Sledgehammer to prove produced con-
jectures, 10 seconds for Sledgehammer to attack the original goal. Furthermore,
We use 15 minutes as the overall timeout for each problem in TIP15.

We ran our evaluations on consumer-grade laptops. Specifically, we used a
Lenovo Thinkpad T490s, with Intel Core i7-8665U CPU and 16GB of RAM.
We used Windows 10 Pro as our evaluation operating system.

3.2 Results

Success rates for different difficulty levels. Figure 3 shows the percentage of
problems proved by each tool at each stage. We use an induction prover for
Isabelle/HOL [16], TAP21, as our baseline prover. “Round0” represents the per-
centage of solved problems after the zeroth round of TBC, where TBC shows the
percentage of solved problems after the second round for Isaplanner and Prod,
but after the first round for TIP15 due to our limited computational resources.

The figure shows that TBC brought the largest improvement (40 percentage
points) to the Prod category. On the other hand, we can prove 60% of problems
in Isaplanner without producing conjectures, while TBC struggles at harder
problems in the TIP15 category.

Program 3 TAP 2021 is the strategy used in the baseline prover introduced
by Nagashima [16]. Since we added minor improvements to Smart Induct, we
represent their version of Smart Induct as Old Smart Induct in this paper.

Ors [

Auto_Solve,

PThenOne [Old_Smart_Induct, Auto_Solve],

PThenOne [Old_Smart_Induct,

Thens [Auto, RepeatN (Hammer), IsSolved]

]

]

117

Isaplanner Prod TIP15

20

40

60

80

53

16
10

60

16
12

75

66

14P
ro
ve
d
p
ro
b
le
m
s
[%

]

TAP21 Round0 PBC

Fig. 3: Proof completion rates.

Proof completion rates and execution time. Fig. 4, Fig. 5, and Fig. 6 show the
chances of solving a problem in each category relative to how long the program
is run. For example, Fig. 5 illustrates that approximately 20% of the problems
are solved within 5 minutes in the Prod category, and 60% of the problems are
solved within 20 minutes of runtime. Beyond this time, the chances of producing
a proof increase marginally, reaching 66% of problems after an hour.

0 10 20 30 40 50 60
0

20

40

60

80

Time [minute]

C
h
an

ce
s
of

so
lv
in
g
[%

]

TAP21
PBC

Fig. 4: Success rates over time for Isaplanner.

118

0 10 20 30 40 50 60
0

20

40

60

80

100

Time [min.]

C
h
an

ce
s
of

so
lv
in
g
[%

]

TAP21
PBC

Fig. 5: Success rates over time for Prod.

0 5 10 15
0

5

10

15

Time [minute]

C
h
an

ce
s
of

so
lv
in
g
[%

]

TAP21
PBC

Fig. 6: Success rates over time for TIP15.

Refuting and proving. Fig. 7 and Fig. 8 show how many conjectures TBC pro-
duced for each problem in Isaplanner and Prod and how it handled them, respec-
tively. As shown in the figure, TBC did not produce any conjectures for some
problems, since it proved these problems even before producing conjectures.
Furthermore, the number of conjectures does not blow up in TBC, since TBC

119

produces conjectures about commonly used properties only. Note that keeping
the number of conjectures low is the main challenge in other conjecturing tools,
as we discuss in Section 4. Moreover, these figures show that most conjectures
are either proved or refuted for problems in Isaplanner and Prod, and only a few
conjectures are left unsolved thanks to the strong default strategy and counter-
example finders.

id
0

id
20

id
40

id
60

id
79

0

10

20

30

#
of

co
n
je
ct
u
re
s

refuted proved not proved

Fig. 7: Conjectures for Isaplanner.

4 Related Work

Conjecturing. We have two schools of conjecturing to automate inductive the-
orem proving: top-down approaches and bottom-up approaches. Top-down ap-
proaches [3, 4, 18] create auxiliary lemmas from an ongoing proof attempt, whereas
bottom-up approaches [5, 10] produce lemmas from available functions and data
types to enrich the background theory [11]. TBC falls into the latter category.
While most bottom-up tools, such as HipSpec [5] and Hipster[10], produce con-
jectures randomly, TBC makes conjectures based on a fixed set of templates.
Furthermore, Hipster aims to discover new lemmas, TBC checks for known prop-
erties to keep the number of conjectures low. In this respect, RoughSpec [7] is
similar to TBC: it produces conjectures based on templates, which describe im-
portant properties. Contrary to TBC, RoughSpec supports only equations as
templates and is a tool for Haskell rather than a proof assistant.

120

id
0

id
10

id
20

id
30

id
40

0

10

20

30

#
of

co
n
je
ct
u
re
s

refuted proved not proved

Fig. 8: Conjectures for Prod.

Inductive theorem proving. TBC is an automatic tool developed for an interac-
tive theorem prover (ITP) based on a higher-order logic. Others have introduced
proof by induction for automatic theorem provers (ATPs) [12, 22, 9, 23, 20]. ATPs
are typically based on less expressive logics and use different proof calculi com-
pared to LCF-style provers. Moreover, ATPs are built for performance, whereas
LCF-style provers are designed for high assurance and easy user-interaction.
Such differences make a straightforward comparison difficult; however, we argue
that a stronger automation of inductive proofs in ITPs helps users reason data
types and functions they introduce to tackle unique problems.

5 Discussion and Conclusion

Careful investigations into generated proofs reveal that TBC proves conjectures
that are not used to attack the original goal as shown in Appendix. Although
such conjectures may serve as auxiliary lemmas when users prove other problems
in the future, the time spent to prove these conjectures certainly slows down the
execution speed of TBC. Furthermore, TBC fails to prove difficult problems since
they require conjectures specific to them. We expect that combining TBC with
other top-down approaches would result in more powerful automation, which
remains as our future work.

This paper presented our template-based conjecturing tool, TBC. To the best
of our knowledge, TBC is the only tool that achieved high proof completion rates
for the TIP benchmarks while producing human readable proofs that are native
to a widely used ITP.

121

In this work we used 12 commonly known algebraic properties and 4 manually
identified useful conjectures as our templates. It remains our future work to
incorporate templates that are found automatically by analysing large databases
[8] into our framework.

References

1. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C.
(eds.) Interactive Theorem Proving, First International Conference, ITP 2010, Ed-
inburgh, UK, July 11-14, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6172, pp. 131–146. Springer (2010). https://doi.org/10.1007/978-3-642-14052-
5 11, https://doi.org/10.1007/978-3-642-14052-5 11

2. Bulwahn, L.: The new quickcheck for Isabelle - random, exhaustive and sym-
bolic testing under one roof. In: Hawblitzel, C., Miller, D. (eds.) Certified
Programs and Proofs - Second International Conference, CPP 2012, Kyoto,
Japan, December 13-15, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7679, pp. 92–108. Springer (2012). https://doi.org/10.1007/978-3-642-35308-
6 10, https://doi.org/10.1007/978-3-642-35308-6 10

3. Bundy, A., Basin, D.A., Hutter, D., Ireland, A.: Rippling - meta-level guidance for
mathematical reasoning, Cambridge tracts in theoretical computer science, vol. 56.
Cambridge University Press (2005)

4. Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The Oyster-Clam system. In:
Stickel, M.E. (ed.) 10th International Conference on Automated Deduction, Kaiser-
slautern, FRG, July 24-27, 1990, Proceedings. Lecture Notes in Computer Science,
vol. 449, pp. 647–648. Springer (1990). https://doi.org/10.1007/3-540-52885-7 123,
https://doi.org/10.1007/3-540-52885-7 123

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: HipSpec: Automating
inductive proofs of program properties. In: Fleuriot, J.D., Höfner, P., McIver,
A., Smaill, A. (eds.) ATx’12/WInG’12: Joint Proceedings of the Workshops on
Automated Theory eXploration and on Invariant Generation, Manchester, UK,
June 2012. EPiC Series in Computing, vol. 17, pp. 16–25. EasyChair (2012).
https://doi.org/10.29007/3qwr, https://doi.org/10.29007/3qwr

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) In-
telligent Computer Mathematics - International Conference, CICM 2015, Washing-
ton, DC, USA, July 13-17, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9150, pp. 333–337. Springer (2015). https://doi.org/10.1007/978-3-319-20615-
8 23, https://doi.org/10.1007/978-3-319-20615-8 23

7. Einarsdóttir, S.H., Smallbone, N., Johansson, M.: Template-based theory ex-
ploration: Discovering properties of functional programs by testing. In: Chi-
til, O. (ed.) IFL 2020: 32nd Symposium on Implementation and Applica-
tion of Functional Languages, Virtual Event / Canterbury, UK, September
2-4, 2020. pp. 67–78. ACM (2020). https://doi.org/10.1145/3462172.3462192,
https://doi.org/10.1145/3462172.3462192

8. Einarsdóttir, S.H., Johansson, M., Smallbone, N.: LOL: A library of
lemma templates for data-driven conjecturing. In: Buzzard, K., Kut-
sia, T. (eds.) Work-in-progress papers presented at the 15th Conference
on Intelligent Computer Mathematics (CICM 2022) Informal Proceedings

122

(2022), http://www3.risc.jku.at/publications/download/risc 6584/proceedings-
CICM2022-informal.pdf#page=28

9. Hajdú, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recur-
sive definitions in superposition. In: Formal Methods in Computer Aided
Design, FMCAD 2021, New Haven, CT, USA, October 19-22, 2021. pp.
1–10. IEEE (2021). https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 34,
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 34

10. Johansson, M.: Automated theory exploration for interactive theorem proving: -
an introduction to the hipster system. In: Ayala-Rincón, M., Muñoz, C.A. (eds.)
Interactive Theorem Proving - 8th International Conference, ITP 2017, Braśılia,
Brazil, September 26-29, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10499, pp. 1–11. Springer (2017). https://doi.org/10.1007/978-3-319-66107-
0 1, https://doi.org/10.1007/978-3-319-66107-0 1

11. Johansson, M.: Lemma discovery for induction - A survey. In: Kaliszyk, C.,
Brady, E.C., Kohlhase, A., Coen, C.S. (eds.) Intelligent Computer Mathe-
matics - 12th International Conference, CICM 2019, Prague, Czech Repub-
lic, July 8-12, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11617, pp. 125–139. Springer (2019). https://doi.org/10.1007/978-3-030-23250-4 9,
https://doi.org/10.1007/978-3-030-23250-4 9

12. Matt Kaufmann, Panagiotis Manolios, J.S.M. (ed.): Computer-Aided Reasoning
ACL2 Case Studies. Advances in Formal Methods, Springer New York, NY (2000).
https://doi.org/https://doi.org/10.1007/978-1-4757-3188-0

13. Nagashima, Y.: LiFtEr: Language to encode induction heuristics for Is-
abelle/HOL. In: Lin, A.W. (ed.) Programming Languages and Systems -
17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, Decem-
ber 1-4, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11893,
pp. 266–287. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6 14,
https://doi.org/10.1007/978-3-030-34175-6 14

14. Nagashima, Y.: Smart induction for Isabelle/HOL (tool paper). In: 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24,
2020. pp. 245–254. IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-
042-6 32, https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 32

15. Nagashima, Y.: Faster smarter proof by induction in Isabelle/HOL. In: Zhou,
Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August
2021. pp. 1981–1988. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/273,
https://doi.org/10.24963/ijcai.2021/273

16. Nagashima, Y.: Definitional quantifiers realise semantic reasoning for proof
by induction. In: Kovács, L., Meinke, K. (eds.) Tests and Proofs - 16th
International Conference, TAP 2022, Held as Part of STAF 2022, Nantes,
France, July 5, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13361, pp. 48–66. Springer (2022). https://doi.org/10.1007/978-3-031-09827-7 4,
https://doi.org/10.1007/978-3-031-09827-7 4

17. Nagashima, Y., Kumar, R.: A proof strategy language and proof script gener-
ation for Isabelle/HOL. In: de Moura, L. (ed.) Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Swe-
den, August 6-11, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10395, pp. 528–545. Springer (2017). https://doi.org/10.1007/978-3-319-63046-
5 32, https://doi.org/10.1007/978-3-319-63046-5 32

123

18. Nagashima, Y., Parsert, J.: Goal-oriented conjecturing for isabelle/hol. In: Rabe,
F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) Intelligent Computer
Mathematics - 11th International Conference, CICM 2018, Hagenberg, Aus-
tria, August 13-17, 2018, Proceedings. Lecture Notes in Computer Science, vol.
11006, pp. 225–231. Springer (2018). https://doi.org/10.1007/978-3-319-96812-
4 19, https://doi.org/10.1007/978-3-319-96812-4 19

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9, https://doi.org/10.1007/3-540-45949-9

20. Passmore, G.O., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E.,
Kanishev, K., Maclean, E., Mometto, N.: The imandra automated reasoning sys-
tem (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Au-
tomated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12167, pp. 464–471. Springer (2020). https://doi.org/10.1007/978-3-030-51054-
1 30, https://doi.org/10.1007/978-3-030-51054-1 30

21. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) The 8th International Workshop on the Implemen-
tation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011. EPiC Series
in Computing, vol. 2, pp. 1–11. EasyChair (2010). https://doi.org/10.29007/36dt,
https://doi.org/10.29007/36dt

22. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In:
Fontaine, P. (ed.) Automated Deduction - CADE 27 - 27th Interna-
tional Conference on Automated Deduction, Natal, Brazil, August 27-
30, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11716,
pp. 477–494. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6 28,
https://doi.org/10.1007/978-3-030-29436-6 28

23. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D.,
Lal, A., Larsen, K.G. (eds.) Verification, Model Checking, and Abstract In-
terpretation - 16th International Conference, VMCAI 2015, Mumbai, In-
dia, January 12-14, 2015. Proceedings. Lecture Notes in Computer Science,
vol. 8931, pp. 80–98. Springer (2015). https://doi.org/10.1007/978-3-662-46081-
8 5, https://doi.org/10.1007/978-3-662-46081-8 5

124

Appendix

Program 4 Generated Proof Script for Our Running Example
lemma associativity_5382114:

"add var_1 (add var_2 var_3) = add (add var_1 var_2) var_3"

apply (induct "var_1" arbitrary : var_2) apply auto done

lemma associativity_5382286:

"add (add var_1 var_2) var_3 = add var_1 (add var_2 var_3)"

apply (induct "var_1" arbitrary : var_2) apply auto done

lemma identity_5382450: "add 0 var_1 = var_1" apply auto done

lemma identity_5382590: "add var_1 0 = var_1"

apply (induct_tac "var_1") apply auto done

lemma commutativity_5382730:

"add var_1 var_2 = add var_2 var_1" apply (induct_tac "var_1")

apply (simp add : identity_5382590)

subgoal apply clarsimp subgoal apply (induct_tac "var_2")

apply auto done done done

lemma idempotent_Element_5382882: "add 0 0 = 0" apply auto done

lemma swap_Unary_5383532: "add var_1 (S var_2) = add (S var_1) var_2"

apply (induct_tac "var_1") apply auto done

lemma composite_Commutativity_5383684:

"add (add var_1 var_2) = add (add var_2 var_1)"

apply (simp add : commutativity_5382730) done

lemma composite_Commutativity_5383846:

"S (add var_1 var_2) = S (add var_2 var_1)"

apply (simp add : commutativity_5382730) done

lemma composite_Commutativity_5383998:

"even (add var_1 var_2) = even (add var_2 var_1)"

apply (simp add : commutativity_5382730) done

lemma original_goal_5347090: "even (add x x)" apply (induct_tac "x")

apply fastforce apply (metis Nat.distinct (1) Nat.inject

even.simps(3) commutativity_5382730 add.elims) done

Program 4 shows the output of TBC for our running example. The original
goal is proved using commutativity 5382730, which is in turn proved using
identity 5382590. 8 out of 10 proved conjectures are not used to prove the final
goal; however, TBC outputs them, so that users may exploit them in future.

125

Verification of the busy-forbidden protocol⋆

(using an extension of the cones and foci proof framework)

P.H.M. van Spaendonck[0000−0002−9536−1524]

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.H.M.v.Spaendonck@tue.nl

Abstract. The busy-forbidden protocol is a new readers-writer lock
with no resource contention between readers, which allows it to outper-
form other locks. For its verification, specifications of its implementation
and its less complex external behavior are provided by the original au-
thors but are only proven equivalent for up to 7 threads.

We provide a general equivalence proof using the cones and foci proof
framework, which rephrases whether two specifications are branching
bisimilar as six properties on the data objects of the specifications. We
provide an extension of this framework consisting of four additional prop-
erties and prove that when the additional properties hold, the two sys-
tems are divergence-preserving branching bisimilar, a stronger version of
the aforementioned relation that also distinguishes livelocks.

Keywords— cones and foci proof framework · divergence-preserving
branching bisimulation · process algebra · protocol verification · readers-
writer lock

1 Introduction

The readers-writer lock problem is a concurrency problem introduced and solved
by Courtois et al. [5]. The problem requires a synchronisation protocol that pro-
vides safe access to both a shared readers section, which can be used simulta-
neously by any number of threads, as well as an exclusive writer section, which
can not be used by more than one thread at any given time and only when the
readers section is not in use.

In [9], Groote et al. introduce a new readers-writer lock called the busy-
forbidden protocol. This locking protocol is of particular interest as it has no
resource contention between readers, and therefore provides a significant speedup
over other locks when having high readers section workloads.

To ensure the correctness of the protocol, the authors give process algebraic
specifications of both the implementation of the new algorithm as well as a
specification of its external behavior. The authors applied model checking and
proved the implementation and external behavior equivalent for up to 7 threads

⋆ This publication is part of the PVSR project (with project number 17933) of the Mas-
Cot research programme which is financed by the Dutch Research Council (NWO).

126

using the mCRL2 toolset [4], but they were unable to do this for more concurrent
threads due to the statespace of the implementation becoming too large.

But as readers-writer locks often use a large number of concurrent threads,
a general correctness proof for the busy-forbidden protocol is desired. We opt
to prove the process algebraic specifications of the implementation and external
behavior to be equivalent. The advantage of this technique over contract-based
approaches, such as Floyd-Hoare logic [12], and its extension for parallel com-
posed systems by Owicki and Gries [15,16], is that the much smaller equivalent
model can also be used for the modeling and verification of systems built on
top of the busy-forbidden protocol. We consider this a significant advantage, as
this is the typical use-case for readers-writer locks, e.g. the parallel term library
which the protocol was originally designed for.

We prove the equivalence of the implementation and its external behavior by
using the cones and foci proof framework, originally proposed in [11] by Groote
and Springintveld and later generalized by Fokkink et al. in [6]. This framework
simplifies the often complex and cumbersome branching bisimulation proof by
reducing it to a small set of propositions on the data objects occurring in the
implementation and specification. If these propositions are shown to hold, it
follows that the two systems are equivalent modulo branching bisimulation.

The proof framework has already been used in several case studies to prove
implementation and specification models equivalent, such as the verification of
the 1-bit sliding window protocol in [2], a complex leader election protocol in [7],
and a part of the IEEE P1394 high-speed bus protocol [1] in [17].

Since the equivalence relation proven by the cones and foci proof framework
does not distinguish livelock, we first provide an extension to the framework
such that it can also be used to prove equivalence modulo divergence-preserving
branching bisimulation. This relation is a stronger version of branching bisimu-
lation that does distinguish livelocks [8]. Our extension provides four additional
propositions on the data objects in the implementation and specification models,
that, when shown to also hold, imply the equivalence of the two processes modulo
divergence-preserving branching bisimulation. We give a soundness proof of this
extension and use it to prove the equivalence of implementation and specification
of the busy-forbidden protocol.

2 The busy-forbidden protocol

We first discuss the busy-forbidden protocol. An overview of its implementation
using pseudocode is given in Table 1. The enter - and leave shared functions
are used to have a thread p enter or leave the readers section. Similarly, enter -

and leave exclusive provide functionality for safe access to the writer section.
The protocol uses two binary flags per thread and a single mutex. The first

flag, the busy flag, indicates that a thread is either working or going to work
inside of the readers section. The second flag, the forbidden flag, indicates that
a thread is not allowed to enter the readers section. All flags are initially set to
false. The mutex, called mutex, enforces exclusive access to the writer section.

127

enter shared(thread p) :
p.busy := true;
while p.forbidden
p.busy := false;
if mutex.timed lock()

mutex.unlock();
p.busy := true;

enter exclusive(thread p) :
mutex.lock();
while exists thread q with

¬q.forbidden
select thread r
r.forbidden := true;
if r.busy or sometimes
r.forbidden := false;

leave shared(thread p) :
p.busy := false;

leave exclusive(thread p) :
while exists thread q with

q.forbidden
select thread r
usually do
r.forbidden := false;

sometimes do
r.forbidden := true

mutex.unlock();

Table 1: Pseudocode description of the busy-forbidden protocol

When entering the readers section, a thread sets its busy flag and enters iff
its forbidden flag is false. If the forbidden flag is true, the busy flag is set back
to false to avoid deadlock and the process is repeated again. To reduce resource
contention on the flags, a mutex.timed lock() can be used without altering the
externally visible behavior of the protocol [9]. Upon leaving the readers section,
the thread sets its busy flag back to false.

A thread that wants to enter the writer section must first acquire the mutex.
This ensures that no other thread can be in the writer section simultaneously
and that only the given thread is altering the forbidden flags. Once the mutex
has been acquired, the thread sets the forbidden flag of each thread, but will
immediately undo this if the busy flag of the same thread is true. To prevent a
thread that is acquiring the writer section from locking out some reader threads
while still waiting for others to leave the readers section, random forbidden flags
can sometimes be set back to false. The writer section is entered once all for-
bidden flags are true. Upon leaving, all forbidden flags are set back to false and
the mutex is released. During this, random forbidden flags can be set back to
true. This prevents each iteration that occurs while leaving, from becoming ex-
ternally visible and significantly reduces the number of states in the external
specification.

The externally visible behavior of the protocol is given in Figure 1 and, as
we will prove later, provides an equivalent overview of how threads interact
via the protocol. Individual threads move from node to node. Transition labels
ending with call represent the identically named function being called by a
thread moving across, and those ending with return represent those function

128

calls terminating. All transitions not labeled as such represent some sequence of
internal calculations that occurs during these function calls. Transitions labeled
with a guard, i.e. starting with if, only allow a thread to progress if the given
condition is met.

The Free node represents a thread not interacting with the protocol and being
outside of any section. Each thread initially starts out in this node. The Shared
and Exclusive nodes represent the readers and writer sections, respectively.

A thread starting to acquire the readers lock enters the EnterShared (ES)
node. The thread stays in the ES node as long as its forbidden flag is true.
As repeatedly checking the flag is discouraged through the timed lock call, the
internal loop is labeled as improbable. When the forbidden flag is evaluated to
false, the thread moves to the LockedOffExclusive (LOE) node. After this, it
is no longer possible for any other thread to enter the writer section until the
readers section is completely freed. The LeaveShared (LS) node represents a
thread leaving this section.

Free

ES

LOE Shared

LS

En
te
r

sh
ar
ed

ca
ll

if No threads in
LOS or Exclusive

im
p
ro
ba
bl
e

if
A
t
le
as
t
1
th
re
ad

in
L
O
S

or
E
xc
lu
si
ve

E
n
t
e
r

s
h
a
r
e
d

r
e
t
u
r
n

Lea
ve

sha
red

cal
l

Leave

shared

return

EE

SAF

LOSExclusive

LE

OE

En
te
r

ex
cl
us
iv
e

ca
ll

if No threads in
SAF, LOS, LE
or Exclusive im

p
ro
ba
ble

if No threads in
LOE or Shared

E
n
t
e
r

e
x
c
l
u
s
i
v
e

r
e
t
u
r
n

Lea
ve

exc
lus

ive

cal
l

im
p
ro
ba
bl
e

Leave

exclusive

return

Fig. 1: The external behaviour

When a thread tries to acquire the
writer lock, it enters the EnterExclu-
sive (EE) node. Once the thread ac-
quires the mutex variable, it will move
to the SetAllForbidden (SAF) node
and it will not be possible for any
other thread to acquire the writer lock
before it is released by this thread.
The loop in the SAF node repre-
sents a forbidden flag being set back
to false; this transition is labeled as
improbable as this only rarely occurs.
Once the last busy flag is evaluated to
false, exclusive access is attained and
the thread will move to the Locked-
OutShared (LOS) node before offi-
cially terminating the function call.

When the thread starts releasing
the writer lock, it enters the Leav-
ingExclusive (LE) node. Similar to
the SAF node, a thread within the LE
node can repeatedly turn the forbid-
den flag off and on again, thus never
fully opening up the readers section.
Because a forbidden flag is only very
rarely set back to true when releasing the lock, this transition is also labeled as
improbable. Once the last forbidden flag is set to false, this is no longer possible
and the thread moves to the OpenedExclusive (OE) node, after which it will
officially terminate the function call and move back to the Free node.

129

We can use the model of the external behavior to reason about certain safety
properties. For example, from the guarded transitions from ES to LOE and from
SAF to LOS, we can quickly see that the Shared and Exclusive sections can not
be populated simultaneously, as they require the other respective section to be
empty. The guarded transition from EE to SAF also assures that only a single
thread can be present in the Exclusive section at any given time.

3 Linear process equations

Both the implementation of the pseudocode shown in Table 1 and the external
behavior have been modeled in the mCRL2 language [10]. The mCRL2 lan-
guage is based on the Algebra of Communicating Processes [3] and Calculus of
Communicating Processes [14].

The mCRL2 language models processes using a combination of states and
actions. States represent a collection of internal values that are used to calculate
which actions can occur and what the resulting state will be. Actions represent
any sort of atomic event such as calling a function, or setting or reading a flag.
An action consists of a label and a possible set of data parameters, e.g. the action
lock(p) has lock as the label and p as the data parameter. Parameters can be of
varying types such as booleans, algebraic data types, and mappings. The exact
data types used within the busy-forbidden models are given later.

A special action τ , the so-called hidden or internal action, is used to represent
an action that is externally not directly visible. We use distinct action labels for
internal actions to be able to easily distinguish between them. We explicitly state
which actions should be considered to be τ actions.

We require all process algebraic equations to be in a clustered linear form,
see Definition 1. This form specifies for each action when it can occur and what
the resulting state will be. The

∑
e:S operator models the application of the

non-deterministic choice operator + over all elements in some set S. We also
allow process equations in which the

∑
operators are split into separate smaller∑

operators and individual + operators.
Since the cones and foci proof framework concerns itself only with the actions

that are enabled in a single given state, the clustered normal form becomes
especially useful, as we can directly infer for any given state if an action is
enabled and what the resulting state will be. In [19], Usenko shows that any
mCRL2 specification can be transformed into a clustered linear process equation.

Definition 1. A clustered linear process equation (LPE) is a process specifica-
tion of the form:

X(d:D) =
∑

a:Act

∑

ea:Ea

ca(d, ea) → a(fa(d, ea)) ·X(ga(d, ea)),

where D is the set of states, Act is the set of action labels including τ , Ea is an
indexed set of all data types that need to be considered for label a, the boolean
function ca(d, ea) specifies when the action a with parameters resulting from the

130

function fa(d, ea) is enabled in state d, and ga(d, ea) gives the resulting state
from taking this action from state d.

Often we end up in a situation in which the set of states D also contains un-
reachable states. As we are only interested in the reachable states, we introduce
the notion of an invariant in Definition 2. An invariant is a predicate on states
in an LPE such that when it holds for a given state d:D, it also holds for all
subsequent states.

Definition 2. Given a clustered LPE X as per Definition 1. A predicate I on
the set of states D is called an invariant iff the following holds: for all a:Act, d:D
and ea:Ea,

I(d) ∧ ca(d, ea) ⇒ I(ga(d, ea))

4 Equivalence and the cones and foci proof framework

As stated before, we prove the model of the implementation and the specification
of the busy-forbidden protocol equivalent modulo divergence-preserving branch-
ing bisimulation. We define this equivalence relation in Definition 4, which is
based on the definitions used in [13] and has been adapted to work with process
equations instead of transition systems. In Definition 3, we provide some syn-
tactic glue to make this shift between labeled transition systems and clustered
LPEs more intuitive.

Definition 3. Given a clustered LPE as per Definition 1, states d, d′ ∈ D, and
action l, we define the following relations:

– d
l−→ d′ iff there is an action a with an associated data type ea such that

l = a(fa(d, ea)), the condition ca(d, ea) holds, and ga(d, ea) = d′.

– d
l−→∗d′ iff there is a finite sequence of states d0, . . . , dk such that d0 = d,

dk = d′ and for all 0 ≤ i < k we have di
l−→ di+1.

Definition 4. Given two clustered LPEs as per Definition 1 with sets of states
D and D′. A relation R on the states D×D′ is a divergence-preserving branching
bisimulation iff the following conditions for all states s ∈ D, t ∈ D′, and actions
l ∈ Act hold:

(B1) If sRt and s
l−→ s′ for some state s′ ∈ D, then either l = τ and s′Rt, or there

are states t′, t′′ ∈ D′ such that t
τ−→∗t′

l−→ t′′, sRt′, and s′Rt′′.

(B2) If sRt and t
l−→ t′ for some state t′ ∈ D′, then either l = τ and sRt′, or there

are states s′, s′′ ∈ D such that s
τ−→∗s′

l−→ s′′, s′Rt, and s′′Rt.
(D1) If sR t and there is an infinite sequence of states (sn)n∈N such that s = s0,

and sk
τ→ sk+1 and skR t for all k ∈ N, then there is a state t′ ∈ D′ such

that t
τ→ t′, and skR t′ for some k ∈ N.

131

(D2) If sR t and there is an infinite sequence of states (tn)n∈N such that t = t0,

and tk
τ→ tk+1 and sR tk for all k ∈ N, then there is a state s′ ∈ D such that

s
τ→ s′, and s′R tk for some k ∈ N.

Two clustered LPEs with respective initial states d0 and d′0 are divergence-
preserving branching bisimilar iff there is a divergence-preserving branching
bisimulation R such that d0Rd

′
0.

Note that in (divergence-preserving) branching bisimulation, τ -actions are
said to be externally visible iff their begin- and endpoint are not equivalent.

In [11], it is noted that in communicating systems, equivalent states often
have a “cone-like” structure as is shown in Figure 2. In this figure, equivalent
states are grouped together in the cone C. In the focus point state fc, all exter-
nally visible actions of said cone, i.e. a and b, are enabled. For all other states
in which not all externally visible actions are simultaneously enabled, such as d
or the states along the edges, there is always a path of internal actions, i.e. τ
actions within the cone, that ends in the state fc. We show one such path for
the state d, using the dashed arrows.

fc
d

a

b

a
a

a

a

b
b

b
b

C

Fig. 2: A cone C with focus point fc

If a given system consists of such
“cones”, the cones and foci proof frame-
work can be used to prove equivalence. To
do so, we must provide a state mapping
h : D → D′ that maps states in the im-
plementation to their equivalent state in
the specification, a focus condition FC :
D → B that indicates if a state should
be considered a focus point, i.e. all exter-
nally observable actions are enabled, and
a well-founded ordering <M on D that or-
ders states by their distance to a focus
point. We must then prove that a small set
of requirements are met by the LPEs and
the provided state mapping, focus condi-
tion and ordering.

Any τ action in the implementation that does not leave a cone, i.e. the state
mapping h maps begin- and endpoint to the same state, is renamed to int (short
for internal action). This allows us to easily distinguish between τ actions that
are externally observable, i.e. that are preserved in our specification, and those
that are not. While an int action is considered a τ action, we exclude them from
the set of actions Act.

In Theorem 1, we extend the proof framework towards divergence-preserving
branching bisimulation with a labeling p on cones that labels cones as either
divergent (∆) or non-divergent (∇), and four additional requirements on the
LPEs. The divergent τ -loops in the specification, i.e. a τ transition with the
same begin- and endpoint, are renamed to int to relate these to the divergent
internal behavior in the implementation, i.e. repeatable paths of int actions.

132

Theorem 1. Consider a clustered linear process equation of an implementation
with initial state d0 and some invariant I that holds in d0,

X(d:D) =
∑

a:Act∪{int}

∑

ea:Ea

ca(d, ea) → a(fa(d, ea)) ·X(ga(d, ea)),

and a clustered linear process equation of a specification with initial state d′0,

Y (d′:D′) =
∑

a:Act∪{int}

∑

ea:Ea

c′a(d
′, ea) → a(f ′a(d

′, ea)) · Y (g′a(d
′, ea)).

The LPEs X and Y are divergence-preserving branching bismilar if there is a
state mapping h : D → D′, a focus condition FC : D → B, a well founded
ordering <M on D, and a cone labeling p : D′ → {∆,∇} such that h(d0) = d′0
and the following requirements hold for all states d:D in which invariant I holds:

I If not a focus point, there is at least one internal step such that the target
state is closer to the focus point:

(¬FC(d)) ⇒ (∃eint:Eint. cint(d, eint) ∧ gint(d, eint) <M d)

II For every internal step, the mapping h maps source and target states to the
same states in the specification:

∀eint:Eint.cint(d, eint) ⇒ h(d) = h(gint(d, eint))

III Every visible action in the specification must be enabled after a finite number
of int actions for each corresponding focus point: For all a:Act

∀ea:Ea.(FC(d) ∧ c′a(h(d), ea)) ⇒ (∃dint:D.d int−−→∗dint ∧ ca(dint, ea))

IV Every visible action in the implementation must be mimicked in the corre-
sponding state in the specification: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ c′a(h(d), ea)

V Matching actions have matching parameters: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ fa(d, ea) = f ′a(h(d), ea)

VI For all matching actions in specification and implementation, their endpoints
must be related: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ h(ga(d, ea)) = g′a(h(d), ea)

I∆ Any internal action in the specification is part of an int-loop:

∀eint :Eint.c
′
int(h(d), eint) ⇒ g′int(h(d), eint) = h(d)

133

II∆ The cone labeling indicates whether or not a specification state allows an
int-loop:

p(h(d)) = ∆ ⇔ (∃eint:Eint. c
′
int(h(d), eint))

III∆ A cone is labelled as divergent if and only if it is possible to take an internal
action in its focus points:

FC(d) ⇒ (p(h(d)) = ∆ ⇔ ∃eint:Eint.cint(d, eint))

IV∆ All internal transitions within a non-divergent cone must bring us closer to
a focus point:

∀eint:Eint.((p(h(d)) = ∇∧ cint(d, eint)) ⇒ gint(d, eint) <M d)

Proof. We define R ⊆ D ×D′ as {⟨d, h(d)⟩ | d ∈ D ∧ I(d)}.
Proving that R is a branching bisimulation, i.e. proving conditions B1 and

B2 from Defininition 4, follows the same general proof structure as is used in
both [6], and [11]. We give a concise proof sketch.

Condition B1. Consider the states d, d′:D, and label l:Act∪ {int} such that

d
a→ d′. As per Requirement II, if l = int then h(d) = h(d′). If l ̸= int, then we

have h(d)
l→ h(d′) as per Requirement IV, and VI.

Condition B2. Consider the states d:D, d′2:D
′, and label l:Act ∪ {int} such

that h(d)
l→ d′2. If l = int, then h(d′2) = h(d), as per Requirement I∆. If l ̸= int,

then there is a state d2:D such that d
int−−→∗d2 and FC(d2) as per Requirement I

and <M being well founded. As per Requirements III and VI, there are states

d3, d4:D such that d
int−−→∗d2

int−−→∗d3
l→ d4 and h(d4) = d′2. From Requirement II

follows that all states along the int path are related to h(d).
We show that the branching bisimulation R is also divergence-preserving by

proving the two remaining conditions.
Condition D1. Consider the pair ⟨d, h(d)⟩ ∈ R and an infinite sequence

(dn)n∈N over states in D such that d0 = d and for any n ∈ N we have h(dn) =

h(d) and dn
int−−→dn+1. We show that there is some eint:Eint such that c′int(h(d), eint)

and g′int(h(d), eint) = h(d). If h(d) is labeled ∆ then this directly follows from
Requirements I∆, and II∆.

Assume, for sake of contradiction, that h(d) is labeled as∇ instead. Since <M
is a well-founded ordering on D, the sequence (dn)n∈N contains some minimal
element d⊥ such that no other element in the sequence is smaller than d⊥.
However, as per Requirement IV∆, any outgoing int action from d⊥ must have
an endpoint that is smaller than d⊥, and thus the state that comes directly
after d⊥ in the sequence would have to be smaller, contradicting that d⊥ is the
minimal element.

Condition D2. Consider the pair ⟨d, h(d)⟩ ∈ R and an infinite sequence
(d′n)n∈N over states in D′ such that d′0 = h(d) and for any n ∈ N we have

d R d′n, i.e. d
′
n = h(d), and d′n

int−−→d′n+1.
Since h(d) allows an int-loop, we have p(h(d)) = ∆ as per Requirement II∆.

If d is not a focus point then this action is enabled as per Requirement I. If d

134

is a focus point then this action is enabled as per Requirement III∆, since its
corresponding cone is labeled as ∆. Requirement II gives us that the endpoint
of this internal action is related to h(d). Thus, if a state in the specification
diverges then so do the related states in the implementation.

We thus conclude that the relation R is a divergence-preserving branching
bisimulation. ⊓⊔

5 Models of the specification and the implementation

We now discuss the models of the specification and implementation of the busy-
forbidden protocol, such that we can use the extended proof framework to prove
them equivalent in Section 6. From here on, we use N to denote the number of
concurrent threads and we define P = {p1, . . . , pN} to be the set containing all
N threads.

The linear process equation of the external behavior of the busy-forbidden
protocol is given in Table ?? in the appendix [18]. The set S contains the nodes
shown in Figure 1. Each state in the specification is represented using a mapping
s that maps each thread to its current node, with each thread starting in the
Free node. The set of specification states for N threads is denoted by D′

N . Note
that each condition in the specification is the same as the conditions shown in
Figure 1. The improbable actions are considered to be int actions.

The linear process equation of the implementation is given in Table ?? in the
appendix [18]. All non-typewriter font actions are considered to be τ actions
and italicized actions are specifically considered to be int actions. The set of
implementation states DN is given in Definition 5. A part of each state consists
of N substates, with each substate giving the state of that specific thread. The
set of substates is given in Definition 6, in which substates corresponding to the
same node are grouped together.

Definition 5. Each state in the linearized process of the busy-forbidden imple-
mentation for N threads is defined as the tuple

d = ⟨dp1 , dp2 , . . . , dpN , busy, forbidden,mtx⟩:DN , in which:

– dp1 , dp2 , . . . , dpN are the substates of threads 1 through N .
– busy : P → B is the mapping that keeps track of all the busy flags, in which

busy(p) is the current value of the busy flag of thread p.
– forbidden : P → B is the mapping that keeps track of all the forbidden flags

in the same way as the busy mapping.
– mtx is a boolean that indicates whether the mutual exclusion variable mtx

is locked or unlocked.

Definition 6. The set of substates for each individual process is defined as the
union of the following sets:

– Free = {Free}, ES = {ES1,ES2,ES3,ES4}, LOE = {LOE},
Shared = {Shared}, LS = {LS1,LS2}, EE = {EE}, LOS = {LOS1,LOS2},
Exclusive = {Exclusive}, and OE = {OE1,OE2},

135

– SAF = {SAFU |U ⊂ P}∪{SAFpx,U |px:P,U ⊂ P}∪{SAFundo
px,U |px:P,U ⊂ P},

– and LE = {LEU |U ⊆ P ∧ U ̸= ∅}.
Note that the singleton sets, such as Free, contain a single state with the same
name as the set and do not contain themselves.

In the initial state of the implementation for N threads, all substates are set
to Free, busy and forbidden map each thread p to false and mtx is set to false.

Since the state tuple contains a large number of elements, we use a shorthand
notation for writing down the resulting state. All elements which remain the same
are not listed and are abbreviated with “etc.”. A substate or the mtx variable
being changed in the resulting state is denoted with the “=” operator, where the
lefthand side is assigned the value on the righthand side, e.g. dp = ES2 indicates
that the substate of thread p becomes ES2 in the next state. The function update
f [e 7→ n] specifies that in the next state f(x) equals the new value n if x ≈ e
and otherwise equals its original value.

We introduce the Invariants 1, 2, and 3. These exclude some unreachable
states and show that for any given state, the exact values of busy, forbidden,
and mtx can be inferred from just the set of substates, i.e. dp1 , dp2 , . . . , dpN . In
the proof of Invariant 1, we show that the value of mtx can be inferred from
just the set of substates and that it is not possible to have multiple threads
simultaneously present in the set of states fenced off by the mutex operations.
We show that the values of the busy and forbidden flags can also be inferred
from just the set of substates in the proofs of Invariants 2 and 3.

The exact proofs for these invariants can be found in the appendix [18]. All
of them follow the same general structure. Namely, the actions that result in
a thread entering or leaving the given set of states, e.g. B, are the exact same
actions that result in the value, e.g. busy(p), being altered. And thus the exact
values can be inferred from just the set of substates.

Invariant 1. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∃p:P. dp ∈M ⇔ mtx, and ∀px, py:P. dpx , dpy ∈M ⇒ px = py,

where M = SAF ∪ LOS ∪ Exclusive ∪ LE ∪ {OE2}.

Invariant 2. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∀p:P.dp ∈ B ⇔ busy(p), where B = LOE ∪ Shared ∪ {ES1,ES4,LS2}.

Invariant 3. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∀p:P.forbidden(p) ⇐⇒ ∃q:P.dq ∈ F,

where F = LOS ∪ Exclusive ∪ {LEU |U ⊂ P ∧ p ∈ U} ∪ {SAFU |U ⊂ P ∧ p ∈
U} ∪ {SAFp,U |U ⊂ P} ∪ {SAFundo

p,U |U ⊂ P}.

136

6 Correctness of the busy-forbidden protocol

The state mapping, focus condition, state ordering and cone labeling used during
the equivalence proof are given in Definitions 7, 8, 9, and 10, respectively. These
data objects only need to use substates since the values of the busy, forbidden,
and mtx data objects can be directly inferred from the substates in any given
state.

Definition 7. We define our state-mapping h : DN → D′
N as follows:

h(⟨d1, d2, . . . , dN , busy, forbidden,mtx⟩) = s where s(p) = hP (dp) for any p:P .

The mapping hP , referred to as the substate-mapping, maps each substate to
the specification state with the same name as the set, shown in Definition 6,
that it belongs to, e.g. hP (ES3) = ES and hP (SAF{p1,p3,p4}) = SAF.

Definition 8. We define our focus condition FC : DN → B as follows:

FC(⟨dp1 , dp2 , . . . , dpN , busy, forbidden, mtx⟩) =
∧

px:P

FCpx(dpx),

where FCpx(dpx)
def
= px ∈ {Free,ES1,LOE, Shared,LS1,EE,SAF∅,LOS1,Exclu-

sive,LE{px},OE1}. We refer to the predicate FCpx , for any given px:P , as the
sub-focus condition.

Definition 9. Given two states d = ⟨dp1 , dp2 , . . . , dpN , busy, forbidden,mtx⟩ and
d′ = ⟨d′p1, d′p2, . . . , d′pN , busy′, forbidden′,mtx′⟩, we define the ordering on these
states as follows:

d <M d′
def
=

∧

p:P

dp <p d
′
p,

where, given some thread p:P , the ordering <p on its substates is defined such
that only the following holds:

– ES1 <p ES2 <p ES3 <p ES4, LS1 <p LS2, LOS1 <p LOS2,
and OE1 <p OE2,

– SAFpx,U <p SAFU iff px ∈ U for any given U :P(P) and px:P ,
SAFU\{px} <p SAFpx,U for any given U :P(P) and px:P ,

SAFU < SAFundo
px,U ′ for any given given U,U ′:P(P) and px:P ,

– LEU <p LEU ′ iff U ⊂ U ′ ∧ p ∈ U or p ∈ U ∧ p ̸∈ U ′ for any given U,U ′:P(P)

Definition 10. We define the cone labeling p : D′
N → {∆,∇} as follows: Given

any state s:D′
N , p(s) = ∆ iff ∃q:P.s(q) ∈ {SAF,LE} ∨ (∃q : P.s(q) = ES ∧

∃q′:P.q′ ∈ {LOS,Exclusive}) otherwise p(s) = ∇.

The specification indicates that if there is one thread in the ES node and
one thread in the SAF node, either one of them should be able to progress to
the next node. This is not simultaneously possible in the implementation, as
progressing to the LOE node requires the busy flag to be true and the forbidden

137

flag to be false, while progressing to the LOS node requires all busy flags to be
false and all forbidden flags to be true. Thus, the subfocus point of each node is
chosen such that the external actions are enabled directly given that they would
also be enabled in the specification, with the exception of SAF∅ which is used
as the focus point of the SAF node.

We show that there is a path of int actions from this to some state dint in
which the transition to LOE is enabled. This is outlined in Theorem 2 for which
the proof is given in the appendix [18]. The general idea behind the proof is that
if the forbidden flag is set before it is read by the thread in the ES node, the
busy flag will be set back to false. Repeating this, leads to all busy flags being
false and all forbidden flags being true, thus enabling the transition to LOE.

We now conclude by proving the implementation and specification of the
busy-forbidden protocol equivalent in Theorem 3.

Theorem 2. Given some state d:D, some thread pSAF:P , and some data con-
figuration eτ :Eτ such that FC(d) and c′τ (h(d), eτ) hold, h(d)(pSAF) = SAF and

g′τ (h(d), eτ) = LOE. There must be some state dint:D such that d
int−−→∗dint and

cτ (dint, eτ) hold and h(gτ (dint, eτ))(pSAF) = LOE.

Theorem 3. The LPE of the implementation given in Table ?? and the LPE of
the specification given in Table ?? are divergence-preserving branching bisimilar.

Proof. To prove the aforementioned equivalence, we show that all ten require-
ments given in Theorem 1 hold using Invariants 1, 2, and 3, and the state map-
ping, focus condition, ordering and cone labeling, given in Definitions 7, 8, 9,
and 10, respectively. From the linear process equation, it is relatively easy to see
that Requirements I, II, V, VI, I∆, and II∆ are not invalidated. As such, we refer
the reader to their extended proofs, found in the appendix [18].

Both the implementation and specification contain exactly three externally
observable actions that are not always enabled. For these actions, we show that
if the action in the specification is enabled, the same action is also enabled in
the corresponding focus point in the implementation, and if the action in the
implementation is enabled, the corresponding specification action is also enabled,
thus showing that Requirements III, and IV hold.

The first action is the load(Forbidden(p), false, p) action in ES2 and the τ
transition from the ES to the LOE node in the specification. The load action is
only enabled when forbidden(p) is false, and the τ transition in the specification is
only enabled if there are no threads in LOS or Exclusive node. As per Invariant 3,
these conditions hold exactly when they hold in the corresponding focus points.

The second action is the lock(p) action in EE and the τ transition in the
EE node in the specification. The lock action is only enabled when mtx is false,
and the τ transition in the specification is only enabled if there is no thread in
the SAF, LOS, Exclusive, and LE node. As per Invariant 1, these conditions,
again, hold exactly when they would hold in the corresponding focus points of
the implementation.

The third action is the load(Busy(px), false, p) action in SAFpx,U and the τ
transition from the SAF to the LOS node in the specification. The load action

138

is only enabled when Busy(p) is false and the τ transition is only enabled if there
is no thread in the LOE and Shared nodes. As per Invariant 2, if busy(p) is false
then the LOE and Shared node are empty and thus, if the action is enabled
in the implementation, it is also enabled in the specification. As per the same
invariant, the only focus points in which the action would not be enabled while
it would be in the corresponding specifications state, are the ones in which a
thread is in the SAF node, i.e. some thread p:P has the substate SAF∅. In these
cases, as per Theorem 2, there must be some finite path of int actions to some
state dint in which this action is enabled.

In the corresponding focus points for the SAF and LE cone, there is always
at least one internal action enabled. In the focus point for the ES cone, the
load(Forbidden(p), true, p) action is enabled iff forbidden(p) is true. As per In-
variant 3, the only focus points in which Forbidden(p) is true are the ones in
which the LOS or Exclusive node are occupied. In all other focus points, there
are no further internal actions enabled. Thus Requirement III∆ holds.

If a cone is labelled as non-diverging (∇), then each thread should be in one
of the following nodes: Free, LOE, Shared, LS, EE, LOS, Exclusive, or OE, or
ES, given that there are no threads present in either LOS or Exclusive. With the
exception of the load(Forbidden(p), true, p) action in the ES node, all the inter-
nal actions within these nodes take us closer to a focus point. As per Invariant
3, forbidden is true only if there is a thread present in either the LOS or Exclu-
sive, LE, or SAF node, which are known to be empty. Thus Requirement IV∆

also holds and the implementation and specification are divergence-preserving
branching bisimilar as per Theorem 1. ⊓⊔

7 Conclusion and future work

We have extended the cones and foci proof framework [6, 11] with four addi-
tional requirements, i.e. Requirements I∆, II∆, III∆, and IV∆, such that it can
be used to prove divergence-preserving branching bisimulation. We have proven
this extension to be sound and have used it to prove the implementation and
specification of the novel busy-forbidden protocol [9] to be equivalent.

We note some opportunities to extend upon the work in this paper:

– The completeness of the extended cones and foci proof framework has not
been formally proven. We assume its completeness due to the weakening of
Requirement III, and it is of similar interest as to whether this Requirement
can be made stronger without loss of our assumed completeness.

– As mentioned before, the original cones and foci proof framework has been
used for the verification of the sliding window protocol [2]. The communica-
tion channels used by this protocol are unreliable and thus allow divergence.
As such, the sliding window protocol could provide an interesting case study
for our extension of the cones and foci proof framework.

– The diverging loops in the external behavior are considered to be improbable,
as such, we abstract away any actual, but potentially informative, probabilis-
tic analysis of the protocol.

139

References

1. Ieee standard for a high performance serial bus. IEEE Std 1394-1995 pp. 1–384
(1996). https://doi.org/10.1109/IEEESTD.1996.81049

2. Badban, B., Fokkink, W., Groote, J.F., Pang, J., Pol, J.v.d.: Verification
of a sliding window protocol in µcrl and pvs. FAC 17(3), 342–388 (2005).
https://doi.org/10.1007/s00165-005-0070-0

3. Baeten, J., Weijland, W.: Process algebra, Cambridge tracts in the-
oretical computer science, vol. 18. Cambridge University Press (1990).
https://doi.org/10.1017/CBO9780511624193

4. Bunte, O., et al.: The mcrl2 toolset for analysing concurrent systems. In: Voj-
nar, T., Zhang, L. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 21–39. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1˙2

5. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with
“readers” and “writers”. Commun. ACM 14(10), 667–668 (oct 1971).
https://doi.org/10.1145/362759.362813

6. Fokkink, W., Pang, J., van de Pol, J.: Cones and foci: A mechanical framework
for protocol verification. Formal Methods in System Design 29(1), 1–31 (2006).
https://doi.org/10.1007/s10703-006-0004-3, dBLP:journals/fmsd/FokkinkPP06

7. åke Fredlund, L., Groote, J.F., Korver, H.: Formal verification of a leader election
protocol in process algebra. Theoretical Computer Science 177(2), 459–486 (1997).
https://doi.org/10.1016/S0304-3975(96)00256-3

8. van Glabbeek, R., Luttik, B., Trcka, N.: Computation Tree Logic with Deadlock
Detection. Logical Methods in Computer Science Volume 5, Issue 4 (Dec 2009).
https://doi.org/10.2168/LMCS-5(4:5)2009

9. Groote, J.F., Laveaux, M., van Spaendonck, P.H.M.: A thread-safe term library
pp. 422–459 (2022). https://doi.org/10.1007/978-3-031-19849-6˙25

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
The MIT Press (2014)

11. Groote, J., Springintveld, J.: Focus points and convergent process operators : a
proof strategy for protocol verification. Journal of Logic and Algebraic Program-
ming 49, 31–60 (2001). https://doi.org/10.1016/S1567-8326(01)00010-8

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (oct 1969). https://doi.org/10.1145/363235.363259

13. Luttik, B.: Divergence-preserving branching bisimilarity. EPTCS 322, 3–11 (Aug
2020). https://doi.org/10.4204/EPTCS.322.2

14. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980). https://doi.org/10.1007/3-540-10235-3

15. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta
informatica 6(4), 319–340 (1976). https://doi.org/10.1007/BF00268134

16. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic ap-
proach. Communications of the ACM 19(5), 279–285 (1976)

17. Shankland, C., Van Der Zwaag, M.: The tree identify protocol of ieee 1394 in µcrl.
Formal Aspects of Computing 10(5), 509–531 (1998)

18. van Spaendonck, P.H.M.: Verification of the busy-forbidden protocol (Aug 2022).
https://doi.org/10.48550/arxiv.2208.05334

19. Usenko, Y.S.: Linearization of µcrl specifications. In: Proc. 3rd Workshop on Verifi-
cation and Computational Logic, Technical Report DSSE-TR-2002-5. Department
of Electronics and Computer Science, University of Southampton. Citeseer (2002)

140

kProp: Multi-Neuron Relaxation Method for
Neural Network Robustness Verification

Xiaoyong Xue, Xiyue Zhang ⋆, and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing 100871, China
{xuexy,zhangxiyue,sunm}@pku.edu.cn

Abstract. With the increasing application of neural networks in safety-
critical domains, their robustness becomes a crucial concern. In this pa-
per, we present a multi-neuron relaxation-based verification framework
kProp for ReLU neural networks with adversarial distortions in general
norms. In contrast with existing verification methods tackling general
distortion norms, the proposed multi-neuron relaxation method is able
to capture the relations among a group of neurons, thus providing tighter
convex relaxations and improving verification precision. In addition, ex-
isting methods based on linear relaxation may include infeasible inputs
to the neural network for robustness verification, which further leads to
verification precision loss. To address this problem, we propose a region
clipping method to exclude infeasible inputs to further improve the veri-
fication precision. We implement our verification framework and evaluate
its performance on open-source benchmarks. The experiments show that
kProp can produce precise verification results where existing verification
methods fail to produce conclusive results, and can be applied to neural
networks with more than 4k neurons in general distortion norms.

Keywords: Robustness · Verification · Neural network.

1 Introduction

Neural networks (NNs) have been increasingly used in a broad range of applica-
tions and made inspiring breakthroughs in many safety-critical domains, such as
autonomous driving, drone control, and medical diagnosis [3, 10, 1]. Meanwhile,
a lot of studies have highlighted the vulnerability of neural networks against
adversarial attacks. Adversarial attacks can be performed by applying small im-
perceptible perturbations to alter the NN’s prediction result on the original im-
age [9]. In addition, more practical attacks can be achieved by adding real-world
physical perturbations [5]. With the increasing deployment of neural networks
into safety-critical tasks, rigorous verification of NN’s robustness against adver-
sarial perturbations has gained substantial momentum in recent years.

Verification methods for neural networks mainly fall into two categories –
complete and incomplete. Complete verification methods based on satisfiability
modulo theories (SMT) [4, 11] or mixed integer linear programming (MILP) [13]

⋆
Current Address: Department of Computer Science, University of Oxford, Oxford, UK.

141

can provide an exact answer of whether a neural network is robust. However,
robustness verification of neural networks even with the piece-wise linear func-
tion ReLU (Rectified Linear Unit) is an NP-hard problem [11]. The worst-case
exponential complexity severely restricts the application of such complete veri-
fiers. In contrast, incomplete methods leverage various approximation techniques
to attain better scalability. Approximation techniques include abstract interpre-
tation [8, 16, 14, 15] which captures the propagation from inputs to outputs in
symbolic shapes, and linear relaxation [18–20] which computes linear upper and
lower bounds for non-linear activation functions.

Given a neural network, the (local) robustness verification problem is to en-
sure that the neural network has the same prediction (such as predicted labels)
on the neighborhood of an arbitrary input. Generally, the neighborhood of an
input is characterized by an ℓp ball for a given radius ϵ ∈ R+ with the in-
put as the center. The aforementioned verification methods based on abstract
interpretation, e.g. kPoly [15] and PRIMA [14],only consider ℓ∞ perturbation
neighborhood. However, some real-life perturbations such as adding black and
white stickers [5] cannot be characterized by this formalization. It is more ap-
propriate to capture such distortion in the form of ℓ1 or ℓ2 ball. Verification
methods based on linear relaxation are able to verify robustness for general ℓp
norms. The commonly-used ∆-relaxation [4] in these methods offers the tightest
possible relaxation for one single neuron. However, due to the ignorance of the
constraints between multiple neurons, methods based on ∆-relaxation still suffer
from precision loss. In addition, verification methods based on linear relaxation
make use of Hölder Inequality to calculate the global bounds. In this computa-
tion process, infeasible input regions are considered to derive the global bounds,
which leads to more approximation loss.

In this work, we propose a propagation algorithm based on multi-neuron
relaxation method to produce tighter relaxations for ReLU neural networks in
Section 3. The overall framework of this algorithm is to propagate the verification
objective from the output layer to the input layer, which yields a linear over-
approximation of the original neural network and thus is able to apply to general
ℓp distortions. The key insight of this algorithm is multi-neuron relaxation, shown
in Section 4, to capture the relations among a group of neurons (in the same
layer), which naturally leads to tighter approximation and increased verification
precision. Moreover, we propose a region clipping method for infeasible input
removal in Section 5 to further improve the verification precision.

2 Preliminary

In this section, we provide the preliminaries about neural networks, the local
robustness property, and two kinds of polyhedron representation.

2.1 Neural Network

Neural networks are sequential programs that consist of an input layer, sev-
eral hidden layers, and an output layer. The adjacent layers are connected

142

with weighted edges. A neural network N with n-dimensional input and m-
dimensional output can be regarded as a function f : Rn → Rm. For every
neuron in hidden layers, we split it into the pre-activation neuron and the post-
activation neuron. The neural network y = f(x) can be formulated as follows:

z0,i = xi ∀i = 1 . . . n (1)

ẑl,i =

nl−1∑

j=1

wli,jzl−1,j + bli ∀l = 1 . . . L, i = 1 . . . nl (2)

zl,i = σ(ẑl,i) ∀l = 1 . . . L, i = 1 . . . nl (3)

yi = zL,i ∀i = 1 . . .m (4)

The input layer is represented in Equation (1), where each neuron takes
one-dimensional value of the input data. This network has L − 1 hidden layers
and nl neurons for layer l. Equations (2) and (3) describe the behavior of affine
transformations and non-linear transformations in terms of activation functions.
Here zl,i is the output of the i-th neuron in layer l and ẑl,i is the corresponding
pre-activation output value. wli,j and b

l
i denote the connection weights and biases

between neurons of adjacent layers. The activation function that we consider in
this paper is ReLU, that is σ(x) = max{0, x}. Equation (4) represents the
output layer where the i-th dimension of the output is yi, also denoted as fi(x).
In classification tasks, for a given input x, the neural network determines that
x belongs to class t if ft(x) > fk(x),∀k ̸= t, 1 ≤ k ≤ m.

2.2 Robustness Property

In real-world deployment, neural networks are expected to stay stable when
small perturbations occur to the input data. This safety property is referred to
as local robustness [20], which states that all data that is close to the original
input x0 has the same prediction label as x0.

Specifically, local robustness can be formalized as follows. Given a neural
network f , its input domain Df , an input data x0 with ground-truth label l,
and the distortion radius ϵ, we say the neural network satisfies local robustness
in the neighborhood Bp(x0, ϵ) if

∀x′ ∈ Df , ||x′ − x0||p ≤ ϵ, ∀j ̸= l : fl(x
′) > fj(x

′). (5)

The local robustness is represented by the conjunction of a set of inequalities,
which can be verified by checking the satisfiability of each constraint.

2.3 Polyhedron Representation

The abstract domain of polyhedron is generally used in abstract interpretation
for neural network verification. A bounded polyhedron can be represented as the
intersection of a set of half-spaces, or the convex hull of a set of points. The former
representation is called the H-representation, and the latter one is called the V -
representation. Here are the formal definitions of these two representations.

143

Definition 1 (H-representation). A is an m × n-matrix, and b is a column
vector in Rm. A polyhedron in H-representation is a region P ⊆ Rn that satisfies
a set of linear constraints.

P = {x ∈ Rn | Ax ≤ b}

Definition 2 (V -representation). Let R = {r1, r2, . . . , rm} be a set of points
in Rn. A bounded polyhedron in V -representation is the convex hull of R.

P = {x ∈ Rn | x =
m∑

i=1

λiri,
m∑

i=1

λi = 1, λi ≥ 0, i = 1 . . .m}

Both representations can describe a polyhedron, but each has its advan-
tages and disadvantages. Computing intersection of polyhedra is simpler in H-
representation. And the V -representation makes it easier to compute the convex
hull. We can use the Double Description Method [6] to transform one to another.

3 Propagation Framework

In this section, we present the general propagation framework with multi-neuron
relaxation and region clipping to compute tighter convex relaxation of neural
networks and more precise verification results against adversarial distortions in
general ℓp norms, which is shown in Fig. 1.

The idea of layer-by-layer propagation from output to the input has been
widely used in many neural network verification methods [16, 17, 19, 20]. As
shown in Fig. 1, the propagation procedure begins from the output layer. Specif-
ically, the verification objective t = yo−yl is characterized by the linear inequal-
ities in Equation (5), where l is the prediction label of the given input and o ̸= l.
If t < 0, then the local robustness of the neural network on the given input data
within the adversarial distortions is guaranteed.

The verification objective t is then propagated from the output to the input
layer by layer. However, the non-convexity of activation functions is the obstacle
in the backward propagation of the linear objective. Therefore, in this process,

����������	
	��������������������	
�������������	
��
������������	
�	��
������
���	��
�
�������� �����
����� �����
������ �����������������
�����

�������������	
�� ��� !"�#�$% &'()*(+
Fig. 1. Backward propagation framework

144

we maintain an over-approximation of t by performing linear relaxations for
the activation functions in each hidden layer. In this way, we can transform
the linear inequalities to the input layer and obtain a linear relaxation of the
neural network. When the verification objective is propagated to the input layer,
the over-approximation of t is a linear combination of input variables. We then
calculate the upper bound of t restricted by the input constraints.

The most crucial part in the propagation framework is the linear relaxation.
For neuron ẑk,i, we compute its two scalar bounds ubk,i and lbk,i that satisfy
lbk,i ≤ ẑk,i ≤ ubk,i for any x′ ∈ Bp(x, ϵ). The neurons of hidden layers can be
categorized into three types according to the scalar bounds.

– If the neuron is always activated (lbk,i ≥ 0), we have zk,i = ẑk,i.
– If the neuron is always deactivated (ubk,i ≤ 0), we have zk,i = 0.
– If the neuron is unstable (lbk,i < 0 < ubk,i), we perform linear relaxation.

Existing verification methods use an upper bounding function Uk,i and a
lower bounding function Lk,i for each unstable neuron zk,i. These two functions
are subject to the following inequality: Lk,i(ẑk,i) ≤ σ(ẑk,i) ≤ Uk,i(ẑk,i). The most
frequently used bounding functions are linear functions, which can be calculated
based on the scalar bounds of the pre-activation neurons as follows:

Uk,i(ẑk,i) =
ubk,i

ubk,i − lbk,i
(ẑk,i − lbk,i) L1

k,i(ẑk,i) = ẑk,i L2
k,i(ẑk,i) = 0

The above bounding functions are used in many verification methods [16,
20]. Generally, the upper bounding function has only one candidate. But the
lower bounding functions are adaptively selected from L1

k,i and L2
k,i. The bound-

ing function that minimizes the area between the activation function and lower
bound is chosen, which means Lk,i(ẑk,i) = ẑk,i is selected if ubk,i+ lbk,i ≥ 0, and
Lk,i(ẑk,i) = 0 is selected if ubk,i + lbk,i < 0.

Existing works mentioned above only consider the relaxation on one single
neuron, losing sight of relations among neurons in the same hidden layer. We
aim to capture the relations between multiple neurons and obtain tighter convex
relaxation by calculating the joint bounding function for a group of neurons.

We propose a multi-neuron relaxation based verification framework as shown
in Algorithm 1. To calculate joint bounding functions for a group of neurons,
the first step is to compute bounding functions for each single neuron through
a fast linear relaxation method (line 1). In the backward propagation process,
neurons that are always activated or deactivated can be directly propagated to
the pre-activation layer (line 5 - 8). For the remaining unstable neurons, we
gather them together (line 9) and perform multi-neuron relaxation (line 10 -
15). Computing joint bounding functions for all unstable neurons is practically
infeasible for large-scale neuron networks. To achieve better scalability, we divide
the unstable neurons into several non-overlapping groups and calculate bounding
functions for each neuron group. Each group is formed by randomly selecting k
unstable neurons.

Based on the multi-neuron relaxation method, we can propagate the ver-
ification objective to the preceding layer according to Equation (2) (line 17).

145

Algorithm 1: Propagation Framework

Input: Verification objective t =
∑nL−1

i=1 cL−1,izL−1,i + βL−1,
the given input x0, radius ϵ, norm p, weights wl

i,j , biases b
l
i,

number of neurons in a group k
Output: An upper bound of t

1 ub, lb, U , L ← InitalBounding(x0, ϵ, p)
2 for l ← L-1, . . . , 1 do
3 unstable neurons ← {}
4 for i← 1 to nl do
5 if lbl,i ≥ 0 then
6 t← t− cl,izl,i + cl,iẑl,i
7 else if ubl,i ≤ 0 then
8 t← t− cl,izl,i + 0 · ẑl,i
9 else add zl,i to unstable neurons ;

10 while unstable neurons is not empty do
11 Pop k neurons zl,u1 , zl,u2 , . . . , zl,uk from unstable neurons

12 U group ← [Ul,u1 , Ul,u2 , . . . , Ul,uk]
13 L group ← [Ll,u1 , Ll,u2 , . . . , Ll,uk]

14 upper bound ← JointBound(
∑k

i=1 cl,uizl,ui, U group, L group, x0, ϵ,
p)

15 t← t−∑k
i=1 cl,uizl,ui+ upper bound

16 for i← 1 to nl do

17 t← t− ĉl,iẑl,i +
∑nl−1

j=1 ĉl,iw
l
i,jzl−1,j + ĉl,i ∗ bli

18 res ← GlobalBound(t, x0, ϵ, p)
19 return res

Through repeating the above procedure for every hidden layer in a backward
manner, we can obtain a linear relaxation of the verification objective, which is
in the form of t ≤ α1x1 + α2x2 + · · ·+ αnxn + β.

The last step of this algorithm is to find a global upper bound, the maximum
value of t, with regard to the input perturbations. For any input x0, we can use
Hölder Inequality to find the solution in Bp(x0, ϵ) [20]. However, some regions of
this ball are not included in the input domain of the neural network. To address
this problem, we propose the region clipping method in Section 5.

4 Multi-Neuron Relaxation

In this section, we introduce the insight of multi-neuron relaxation over single
neuron relaxation and how to calculate the multi-neuron relaxation for a group
of unstable neurons.

4.1 Motivation Example

We first show the superiority of multi-neuron relaxation with a simple example.

146

Example 1. Consider a neural network with one hidden layer. It has three neu-
rons in the input layer, two neurons in the hidden layer, and two neurons in the
output layer. The structure of this neural network is illustrated with the following
equations and figure.

x1, x2, x3 ∈ [0, 1]

ẑ1 = x1 − x2

ẑ2 = x1 + x2 + x3 − 1

z1 = ReLU(ẑ1)

z2 = ReLU(ẑ2)

y1 = z1 y2 = −1

2
z2

������������ ���	�
������ ���	 ���	������ �� ����� ���
The range of each input neuron is [0, 1]. In this example, we attempt to find

the upper bound of t = y1 − y2 = z1 +
1
2z2.

We first perform single neuron relaxation using the bounding functions shown
in Section 3. According to the value range of x1, x2, x3, we can calculate that the
lower scalar bound and upper scalar bound of ẑ1 are −1, 1, and those of ẑ2 are
−1, 2. The single-neuron upper bounding function for z1 and z2 are U1 = 1

2 ẑ1+
1
2

and U2 = 2
3 ẑ2 +

2
3 .

With the above bounding function we have t ≤ 1
2 ẑ1+

1
3 ẑ2+

5
6 . By substituting

ẑ1, ẑ2 with x1, x2, x3, we have t ≤ 5
6x1 − 1

6x2 +
1
3x3 +

1
2 . Considering the input

range, the upper bound of t with single neuron relaxation is 5
3 .

In single neuron relaxation, we only make use of the scalar upper and lower
bounds. The pre-activation neurons ẑ1 and ẑ2 are treated to be independent of
each other. However, they are not independent. In this example, the values of
ẑ1 and ẑ2 are taken from blue region as shown in Fig. 2(a). Then the image
of function t = ReLU(ẑ1) +

1
2ReLU(ẑ2) over the blue region is illustrated in

Fig. 2(b). This image is composed by four planes as the function is linear in each

ẑ1

ẑ2

-1 1

(-1,1) (1,1)

2

¬

® ¯

(a) Value range of ẑ1, ẑ2

ẑ1

ẑ2

t

¬

®
¯

(b) Formulated region of (a)

ẑ1

ẑ2

t

(c) Convex hull of (b)

Fig. 2. Relations of hidden neurons in Example 1

147

Algorithm 2: Computing Joint Bound

Input: Function t =
∑k

i=1 cizi, upper bounding functions U group, lower
bounding functions L group, the given input x0, radius ϵ, norm p

Output: An upper bounding function of t

1 octahedron ← OctaheralAbstraction(U group, L group, x0, ϵ, p)
2 segments ← Split(octahedron, k)
3 generators ← {}
4 for each segment in segments do
5 vertices ← GetVertices(segment)
6 for each (v1, . . . , vk) in vertices do

7 lifted v ← (v1, . . . , vk,
∑k

i=1 ReLU(vi))
8 add lifted v to generators

9 bounds ← GetFacets(generators)
10 upper bound ← BoundSelection(bounds, generators)
11 return upper bound

quadrant. As this function is piece-wise linear, the formulated region in (ẑ1, ẑ2, t)-
space is non-convex. To calculate the joint bounding functions, we calculate the
convex hull of this region as shown in Fig. 2(c) where each facet of the convex
hull can be transformed into a bounding function.

Considering the orientations of facets in Fig. 2(c), we can obtain two upper
bounding functions. Using the bound selection algorithm (Section 4.3), t ≤ 1

2 ẑ1+
ẑ2 + 1

2 is selected to be the upper bounding function. After propagating this
joint bound to the input layer, we have t ≤ x1 +

1
2x3. The upper bound of t is

then calculated to be 3
2 with multi-neuron relaxation, which is tighter than the

obtained upper bound with single neuron relaxation.

4.2 Joint Bounding Function

In this subsection we present how to compute the joint bounding functions for
multi-neuron relaxation.

The multi-neuron relaxation algorithm is shown in Algorithm 2. It can be di-
vided into three steps: determining the value range of the pre-activation neurons,
constructing thecorresponding region in the (ẑ, t)-space where ẑ = (ẑ1, . . . , ẑk),
and computing the convex hull of this region.

We use octahedral abstraction [15, 14] to determine the value range of the
pre-activation neurons (line 1). Specifically, the octahedral abstraction is rep-
resented by a series of linear inequalities that over-approximate the values of
a group of neurons, i.e., {∑k

i=1 diẑi ≤ ei | di ∈ {−1, 0, 1}, di are not all zero.}.
The constant term ei is generated by computing the upper bound of

∑k
i=1 diẑi,

which utilizes the single neuron bounding functions.
Next we construct the region in the (ẑ, t)-space, which corresponds to the

value range of pre-activation neurons (line 2 - 7). As ReLU is linear in each
orthant, the input domain is split into a list of subregions by adding constraints

148

ẑi ≥ 0 or ẑi ≤ 0 (line 2). If there are k neurons in a group, the number of
produced subregions is at most 2k.

Example 2. The value range of ẑ1, ẑ2 in Example 1 can be described with the
following linear inequalities.

ẑ1 ≤ 1,−ẑ1 ≤ 1, ẑ1 ≤ 2,−ẑ1 ≤ 1, ẑ1+ẑ2 ≤ 2,−ẑ1+ẑ2 ≤ 2, ẑ1−ẑ2 ≤ 1,−ẑ1−ẑ2 ≤ 1

This can be split into 4 subregions by adding inequalities like ẑ1 ∼ 0, ẑ2 ∼ 0 (∼ is
≤ or ≥). For example, by adding ẑ1 ≥ 0, ẑ2 ≥ 0 the upper right quadrant (after
simplification) is ẑ1 ≤ 1, −ẑ1 ≤ 0, −ẑ2 ≤ 0, ẑ1 + ẑ2 ≤ 2.

In each subregion, as the activation function is linear, the constituted region
in (ẑ, t)-space is a plane, which can be represented with linear inequalities, i.e.,
H-representation. For the convenience of computing the convex hull of the con-
stituted region in (ẑ, t)-space, we transform this into the V -representation. We
firstly use the Double Description Method to transform the subregion into the
V -presentation and get its vertices (line 5). Then for each vertex v, we compute
its corresponding t value and concatenate it with v (line 7). In this way, we lift
this vertex to the (ẑ, t)-space, and we get the V -representation of the formulated
region in the (ẑ, t)-space.

Example 3. The vertices of the quadrant in Example 2 are (0, 2), (0, 0), (1, 0),
(1, 1). The output function is t = ReLU(ẑ1) +

1
2ReLU(ẑ2). For vertex (0, 2), we

have t = ReLU(0) + 1
2ReLU(2) = 1. Concatenate this with (0, 2), and we can

get the lifted vertex (0, 2, 1). In the same way, the other three lifted vertices are
(0, 0, 0), (1, 0, 1), (1, 1, 32). The corresponding region of the upper right quadrant
in (ẑ1, ẑ2, t)-space is represented as the convex hull of these 4 lifted points, i.e.,
V -representation.

The last step is to compute the convex hull of all subregions in (ẑ1, . . . , ẑ, t)-
space. Since all formulated subregions are in V -representation, we just need to
gather all the vertices (line 8) to get the V -representation of the convex hull.
Then we can use Double Description Method again to transform the convex hull
into H-representation (line 9). Each inequality of the H-representation is a facet
of the convex hull, and thus a bounding function in multi-neuron relaxation.
We can determine the orientation of a facet with the coefficient of the output
variable.

Example 4. By gathering all the vertices, we can get the V -representation of
the convex hull in Fig. 2(c). And with Double Description Method, we can get
the facets of this convex hull.

−ẑ1 + 2t ≤ 2, −ẑ1 − ẑ2 + 2t ≤ 1

−t ≤ 0, ẑ1 − t ≤ 0, ẑ2 − t ≤ 0, 2ẑ1 + ẑ2 − 2t ≤ 0

The coefficients of t in the first two inequalities are positive, thus they are the
upper bounding functions.

149

4.3 Bounding Function Selection

We have introduced how to compute the bounding functions in the previous
subsection. Note that the convex hull of the constructed region may have more
than one facet, and thus the bounding functions may not be unique. For exam-
ple, there are two upper bounding functions in Example 4. However, only one
bounding function can be adopted in the propagation framework for computa-
tional efficiency. To address this problem, we propose an approach to select the
bounding functions (line 10).

Similar to the adaptive selection in single neuron relaxation, we choose the
bounding function that minimizes the difference between the bounding func-
tion and the original activation function. Specifically, we measure the difference
between the bounding function and activation function on the region vertices.
After splitting the value range of the pre-activation neurons, we can gather the
vertices of all subregions together. We then calculate the sum of the differences
between the bounding function and activation function on these vertices.

difference =
∑

p∈generators
|bounding(p)− activation(p)|

The bounding function with the minimum difference is chosen to be the best
and applied in the propagation framework.

Example 5. There are two upper bounding functions in Example 4: f1 = 1
2 ẑ1 +

1
2 ẑ2 +

1
2 , and f2 = 1

2 ẑ1 + 1 The vertices are (0, 2), (1, 1), (1, 0), (0, 0), (0,−1),
(−1, 0), (−1, 1). For bounding function f1 = 1

2 ẑ1 +
1
2 ẑ2 +

1
2 ,

diff1 = |3
2
− 1|+ |3

2
− 3

2
|+ |1− 1|+ |1

2
− 0|+ |0− 0|+ |0− 0|+ |1

2
− 1

2
| = 1

For bounding function f2, we have diff2 = 3 in the same way. The first bounding
function is closer to the activation function than the second one. Therefore, we
choose f1 as the upper bounding function in Example 1.

5 Region Clipping

As introduced in Section 3, simply using Hölder Inequality may lead to verifica-
tion precision loss because the derived global upper bound of the neural network
may take infeasible inputs into consideration. For example, as shown in Fig. 3,
when the given data point (black dot) lies on the boundary of the input region,
some portion of the ℓp ball (red part) is not included in the neural network’s
input domain.

For robustness verification, we only need to consider the intersection of the
neural network’s input domain and the distortion neighborhood, which is repre-
sented by the blue region in Fig. 3. Clipping out infeasible inputs to the neural
network can assist in computing a tighter global upper bound, thus increasing
the verification precision.

150

(a) l∞ neighborhood (b) l1 neighborhood (c) l2 neighborhood

Fig. 3. The neighborhood of a borderline input.

Without loss of generality, we assume the value range of each input neuron
is [0, 1]. Considering robustness verification with respect to Bp(x0, ϵ), comput-
ing the global bound of the neural network in the clipped input region can be
formulated as the following constrained optimization problem

γ = max
x′

n∑

i=1

αix
′
i + β s.t. x′i ∈ [0, 1], ||x′ − x0||p ≤ ϵ.

We can reformulate the above problem by setting vi = x′i − x0,i.

γ = max
v

n∑

i=1

αivi +

n∑

i=1

αix0,i + β s.t.− x0,i ≤ vi ≤ 1− x0,i,

n∑

i=1

|vi|p ≤ ϵp.

The last two terms of γ are constants. So we just need to find the maximum
value of the first term. Solving this optimization problem with respect to l∞
neighborhood is trivial. We just need to clip the illegal value range of each
input variable and the resulted feasible region is still a box. However, for the
other cases, the feasible region is irregular. Next we propose the region clipping
methods for ℓ1 neighborhood and ℓp (p ≥ 2) neighborhood separately.

For ℓ1 neighborhood, we sort the perturbation variables in non-increasing or-
der according to the absolute values of their coefficients. This is because variable
with larger absolute value of coefficient has more influence on the optimization
objective. Therefore, we maximize the perturbation variables one by one in this
order until either reaching the boundary of the feasible region or exhausting the
allowed distortions.

Region clipping for ℓp (p ≥ 2) neighborhood is presented in Algorithm 3. As
with region clipping for ℓ1 neighborhood, we only maximize the first term of γ.
This optimization problem can be solved by Lagrange multiplier method. We can
construct the Lagrangian function and obtain the Karush–Kuhn–Tucker (KKT)
conditions. As the objective function is linear and the inequality constraints are
continuously differentiable convex functions, the satisfaction of KKT conditions
are sufficient and necessary conditions for the optimal solution. We can find the
optimal solution along with the direction of the gradient. If the boundary of
a linear constraint is encountered, we fix the corresponding distortion vi and
optimize the remaining variables. The solution found by Algorithm 3 satisfies
the KKT conditions, thus is the optimal solution.

151

Algorithm 3: Region clipping for l2 neighborhood

Input: The objective function
∑n

i=1 αivi, the given data point x0,
neighborhood radius ϵ, norm p

Output: the maximum value of
∑n

i=1 αivi
1 ri ← 0 for all i = 1, . . . , n
2 for i ← 1 . . . n do
3 if αki > 0 then
4 ri ← 1− x0,i
5 else
6 ri ← −x0,i

7 q ← 1
p−1

8 {αk1 , . . . , αkn} ← sort {α1, . . . , αn} in non-decreasing order according to ri
α
q
i

9 remain, γ ← ϵp, 0
10 for i = 1 to n do

11 if
r
p
ki

α
pq
ki

∑n
j=i α

pq
kj
≥ remain then

12 γ ← γ + (
∑n

j=i α
pq
kj
)

1
pq · remain 1

p

13 break

14 else
15 γ ← γ + αki · rki

16 remain ← remain − rpki

17 return γ

6 Experiments

We implement the propagation framework with multi-neuron relaxation and re-
gion clipping as kProp. To show the effectiveness of our algorithm, we compare
kProp with two widely-used robustness verifiers, DeepPoly [16] and CROWN [20].
DeepPoly is an efficient verifier with high precision, but it can only be used for
distortions of l∞ norm. CROWN can verify the robustness of neural networks
with regard to general lp norms. But CROWN simply uses Hölder Inequality
to calculate the global bound of the final optimization problem. Both of them
adopt the single neuron relaxation.

Neural Networks and Datasets. The neural networks used in our experi-
ments are well-trained models from the publicly available ERAN dataset [7]. We
conduct experiments on both feed-forward neural networks (FNNs) and con-
volutional neural networks (CNNs) trained on MNIST [12] and CIFAR-10 [2]
datasets. The feed-forward neural network with a hidden layers and b neurons
per hidden layer is denoted as a× b. The convolutional neural network denoted
as Conv has two convolutional layers and two fully-connected layers. For each
neural network, we use the first 1000 images from the corresponding test data
as the test images and filter out the misclassified images.

152

Table 1. Number of verified local robustness properties.

Dataset Model ℓ∞ norm ℓ1 norm ℓ2 norm

ϵ kProp DeepPoly ϵ kProp CROWN ϵ kProp CROWN

MNIST

6×100 0.026 174 160 2.5 350 223 0.3 546 287
9×100 0.026 186 182 2.5 309 219 0.3 456 272
6×200 0.015 303 292 2 303 144 0.25 342 116
9×200 0.015 262 259 2 188 132 0.25 276 112
Conv 0.12 158 158 1.5 766 367 0.6 486 137

CIFAR-10
6×100 0.002 55 54 1 112 97 0.07 106 99
9×200 0.002 63 63 1 136 112 0.07 127 123
Conv 0.01 274 256 0.5 303 268 0.12 307 280

Problem Settings. The properties considered in the experiments are local
robustness with respect to distortions in ℓ∞, ℓ1 and ℓ2 norms. The radius of ℓp
ball ϵ is set to different values in different settings to avoid meaningless results.
Experiments conducted on neural networks with respect to l∞ norm are set to
smaller radius than those with respect to l1 norm. The detailed radius settings ϵ
are shown in Table 1. For all neural networks and norms, we use k = 3 in kProp
to balance precision and time cost.

Experiment Results. Table 1 shows the number of verified local robustness
properties for common distortions in terms of ℓ∞, ℓ1, and ℓ2 norms based on
different verification algorithms. In general, our method demonstrates better
verification precision and outperforms DeepPoly and CROWN or achieves com-
parable performance for all verification problems.

For ℓ1 and ℓ2 norms, kProp shows great superiority over CROWN with
tighter convex relaxation through the multi-neuron relaxation method and tighter
global bounds through region clipping. For MNIST dataset, the number of ver-
ified properties by kProp is at least 40% more than those of CROWN. The
precision gain is especially noticeable on convolution neural networks. kProp
successfully verifies 766 problems for ℓ1 norm and 486 problems for ℓ2 norm,
whereas CROWN verifies 367 and 486 problems respectively. For the CIFAR-
10 dataset, the improvements on convolutional neural networks are also more
significant compared with FNNs. For ℓ∞ norm, we only perform comparison
experiments with DeepPoly as it demonstrates better verification performance
than CROWN in this case. DeepPoly also performs region clipping for distortions
of ℓ∞ norm. Therefore, the results mainly demonstrate the effect of multi-neuron
relaxation. We can see that kProp is able to verify more robustness problems
than DeepPoly which indicates that multi-neuron relaxation can provider tighter
bounds than single neuron relaxation. The computational cost of kProp is ac-
ceptable. For the most complicated verification task, robustness of CNN trained
on CIFAR-10 with respect to ℓ2 norm, the average runtime cost of each problem
is less than 12 minutes. For verification tasks on FNNs with respect to ℓ1 or ℓ∞
norms, kProp is able to finish in a few seconds.

153

Table 2. Number of verified properties of 6×100 FNN and runtime for k = 2, 3, 4.

Norm ϵ k=2 k=3 k=4

verified(#) time(s) verified(#) time(s) verified(#) time(s)

ℓ∞ 0.026 166 1.99 174 4.61 174 187.71
ℓ1 2.5 344 5.90 350 9.83 351 131.92
ℓ2 0.3 546 35.33 550 56.87 550 180.06

The choice of k. To explore the influence of parameter k in kProp, we perform
experiments on the 6×100 FNN and MNIST dataset for different k. The number
of verified properties and corresponding runtime are shown in Table 2. With a
larger k, we can capture more complicated relations among neurons, and thus
generate tighter bounding functions. However, this can take plenty of time. On
the contrary, smaller k costs less time but provides looser bounding functions.
To balance precision and efficiency, we chose k = 3 in the previous experiment.

7 Conclusion

We presented a multi-neuron based robustness verification framework kProp to
verify the local robustness of neural networks for general ℓp norms. kProp is
featured with constraint propagation, multi-neuron relaxation, and region clip-
ping. The propagation framework enables kProp to verify robustness properties
for general ℓp norms. The multi-neuron relaxation and region clipping together
improve the verification precision. We implement our algorithm and evaluate it
on a set of neural networks with different sizes, which demonstrates the effec-
tiveness of our method. In the future, we would like to extend the application
range of our method to more activation functions and network architectures.

Acknowledgements This research was sponsored by the National Natural
Science Foundation of China under Grant No. 62172019, 61772038, and CCF-
Huawei Formal Verification Innovation Research Plan.

References

1. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Hampl, A., Havel, J.:
Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine
11(2), 47–58 (2013)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57. IEEE (2017)

3. Chen, Z., Huang, X.: End-to-end learning for lane keeping of self-driving cars. In:
2017 IEEE Intelligent Vehicles Symposium (IV). pp. 1856–1860. IEEE (2017)

4. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis
(ATVA). pp. 269–286. Springer (2017)

154

5. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash,
A., Kohno, T., Song, D.: Robust physical-world attacks on deep learning visual
classification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1625–1634 (2018)

6. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics
and Computer Science. pp. 91–111. Springer (1995)

7. Gagandeep, S., Jonathan, M., Christoph, M., Matthew, M., Timon, G., Adrian, H.,
Petar, T., Dana, D.C., Markus, P., Vechev, M.: Eran verification dataset. https:
//github.com/eth-sri/eran, [online]

8. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18.
IEEE (2018)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: 3rd International Conference on Learning Representations (ICLR),
Conference Track Proceedings (2015)

10. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC). pp. 1–10. IEEE (2016)

11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Computer Aided Veri-
fication - 29th International Conference (CAV). pp. 97–117. Springer (2017)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

13. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks (2017), https://arxiv.org/abs/1706.07351

14. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general
and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages 6(POPL), 1–33 (2022)

15. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems (NeurIPS). vol. 32, pp. 15072–15083 (2019)

16. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

17. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Advances in Neural Information Processing Systems
(NeurIPS). vol. 31, pp. 6369–6379 (2018)

18. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for neural
network robustness verification. In: Advances in Neural Information Processing
Systems (NeurIPS). vol. 34, pp. 29909–29921 (2021)

19. Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Daniel, L., Boning, D.,
Dhillon, I.: Towards fast computation of certified robustness for ReLU networks.
In: Proceedings of the 35th International Conference on Machine Learning (ICML).
vol. 80, pp. 5276–5285. PMLR (2018)

20. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Advances in
neural information processing systems (NeurIPS). vol. 31, pp. 4944–4953 (2018)

155

Author Index

A
Abreu, Rui 24
B
Bang, James 111
Bannour, Boutheina 87
Barbosa, Lúıs Soares 1
C
Cunha, Juliana 1
D
Domenici, Andrea 18
E
Ebnenasir, Ali 39
F
Faria, João 24
Fazli, Ebrahim 39
G
Gaston, Christophe 87
Goc, Daniel Sebastian 111
H
Huang, Wen-Ling 54
K
Khamespanah, Ehsan 71
Khosravi, Ramtin 71
Krafczyk, Niklas 54
L
Lapitre, Arnault 87
Le Gall, Pascale 87
M
Madeira, Alexandre 1
Mahe, Erwan 87
N
Nagashima, Yutaka 102, 111
P
Peleska, Jan 54
S
Sirjani, Marjan 71
Sun, Meng 141
V
van Spaendonck, Flip 126
W
Wang, Ningli 111

X
Xu, Zijin 111
Xue, Xiaoyong 141
Z
Zhang, Xiyue 141

